Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794340

RESUMEN

Pharmacy compounding, the art and science of preparing customized medications to meet individual patient needs, is on the verge of transformation. Traditional methods of compounding often involve manual and time-consuming processes, presenting challenges in terms of consistency, dosage accuracy, quality control, contamination, and scalability. However, the emergence of cutting-edge technologies has paved a way for a new era for pharmacy compounding, promising to redefine the way medications are prepared and delivered as pharmacy-tailored personalized medicines. In this multi-site study, more than 30 hospitals and community pharmacies from eight countries in Europe utilized a novel automated dosing approach inspired by 3D printing for the compounding of non-sterile propranolol hydrochloride tablets. CuraBlend® excipient base, a GMP-manufactured excipient base (pharma-ink) intended for automated compounding applications, was used. A standardized study protocol to test the automated dosing of tablets with variable weights was performed in all participating pharmacies in four different iterative phases. Integrated quality control was performed with an in-process scale and NIR spectroscopy supported by HPLC content uniformity measurements. In total, 6088 propranolol tablets were produced at different locations during this study. It was shown that the dosing accuracy of the process increased from about 90% to 100% from Phase 1 to Phase 4 by making improvements to the formulation and the hardware solutions. The results indicate that through this automated and quality controlled compounding approach, extemporaneous pharmacy manufacturing can take a giant leap forward towards automation and digital manufacture of dosage forms in hospital pharmacies and compounding pharmacies.

2.
Eur J Pharm Biopharm ; 83(1): 44-53, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23064325

RESUMEN

Cystic fibrosis (CF) patients are suffering from multiple often chronic endobronchial infection. The stiff mucus in these patients represents a compartment, which cannot easily be reached by systemic treatment. While bacterial infections are now successfully treated with repeated inhalation of antibiotics such as tobramycine, 57% of CF patients are colonized by Aspergillus species. About 10-20% of colonized patients develop symptoms of allergic bronchopulmonary aspergillosis (ABPA). While current standard of treatment of ABPA in CF patients is to suppress the allergy related symptoms by administration of glucocorticoids, itraconazole (ITRA), administered orally at high doses, can alleviate the symptoms of ABPA. However, no inhalable formulation of ITRA is available to enable local treatment of aspergillosis. The aim of this study was to describe an aqueous nanosuspension of ITRA and to characterize the pharmacokinetics after single dose inhalation. Using wet-milling with organic milling beads, a stable nanosuspension with particle size in the range of 200nm and an ITRA concentration of 20% (v/w) could be obtained, using polysorbate 80 at a concentration of 14% relative to ITRA. The suspension was stable if stored at 8°C for 3 months without particle growth and could be nebulized using standard nebulizer technologies including mesh technology and pressured air nebulizers. A 10% suspension was well tolerated upon repeated dose inhalation once daily for 7 days at a predicted dose of 45mg/kg in rats. A single dose inhalation at a predicted dose of 22.5mg/kg resulted in maximum lung tissue concentration of 21.4µg/g tissue with a terminal half-life of 25.4h. Serum concentrations were lower, with a maximum concentration of 104ng/ml at 4h after dosing and a terminal half-life of 10.5h. The data indicate that ITRA nanosuspension represents an interesting formulation for inhaled administration in CF patients suffering from ABPA. High and long lasting lung tissue concentrations well above the minimal inhibitory concentration of Aspergillus species enable once daily administration with minimal systemic exposure.


Asunto(s)
Antifúngicos/farmacocinética , Itraconazol/farmacocinética , Nanopartículas , Administración por Inhalación , Animales , Antifúngicos/administración & dosificación , Antifúngicos/toxicidad , Aspergilosis Broncopulmonar Alérgica/tratamiento farmacológico , Aspergilosis Broncopulmonar Alérgica/etiología , Fibrosis Quística/complicaciones , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Semivida , Itraconazol/administración & dosificación , Itraconazol/toxicidad , Masculino , Tamaño de la Partícula , Ratas , Ratas Wistar , Suspensiones , Temperatura , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...