Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
J Vasc Surg ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025281

RESUMEN

INTRODUCTION: Patient travel distance to the hospital is a key metric of individual and social disadvantage and its impact on the management and outcomes following intervention for chronic limb-threatening ischemia is likely underestimated. We sought to evaluate the effect of travel distance on outcomes in patients undergoing first time lower extremity revascularization at our institution. METHODS: We retrospectively reviewed all consecutive patients undergoing first-time lower extremity revascularization, both endovascular and open, for CLTI from 2005 to 2014. Patients were stratified into 2 groups based on travel distance from home to hospital greater than or less than 30 miles. Outcomes included reintervention, major amputation, restenosis, primary patency, wound healing, length of stay, length of follow-up and mortality. Kaplan-Meier estimates were used to determine event rates. Logistic and cox regression was used to evaluate for an independent association between travel distance and these outcomes. RESULTS: Of the 1,293 patients were identified, 38% traveled more than 30 miles. Patients with longer travel distances were younger (70 vs 73 years, P=0.001), more likely to undergo open revascularization (65% vs 41%, P<0.001), and had similar WifI stages (P=0.404). Longer distance travelled was associated with an increase in total hospital length of stay (9.6 vs 8.6 days, P=0.031) and lower total length of post-operative follow-up (2.1 vs 3.0 years, P=0.001). At 5-years, there was no definitive difference in the rate of restenosis (HR 1.3[0.91-1.9, P=0.155) or reintervention (HR 1.4[0.96-2.1, P=0.065), but longer travel distance was associated with an increased rate of major amputation (HR 2.1[1.2-3.7], P=0.011), and death (HR 1.6[1.2-2.2], P=0.002). Longer travel distance was also associated with higher rate of non-healing wounds (HR 2.3[1.5-3.5], P=0.001). CONCLUSIONS: Longer patient travel distance was found to be associated with a lower likelihood of limb salvage and survival in patients undergoing first-time lower extremity revascularization for chronic limb-threatening ischemia. Understanding and addressing the barriers to discharge, need for multidisciplinary follow-up, and appropriate post-operative wound care management will be key in improving outcomes at tertiary care regional specialty centers.

2.
J Vasc Surg ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942397

RESUMEN

BACKGROUND: Given changes in intervention guidelines and the growing popularity of endovascular treatment for aortic aneurysms, we examined the trends in admissions and repairs of abdominal aortic aneurysms (AAA), thoracoabdominal aortic aneurysms (TAAA), and thoracic aortic aneurysms (TAA). METHODS: We identified all patients admitted with ruptured aortic aneurysms and intact aortic aneurysms repaired in the Nationwide Inpatient Sample (NIS) between 2004-2019. We then examined the utilization of open, endovascular, and complex endovascular repair (OAR,EVAR,cEVAR) for each aortic aneurysm location (AAA,TAAA,TAA), alongside their resulting in-hospital mortality, over time. cEVAR included branched, fenestrated, and physician modified endograft. RESULTS: 715,570 patients were identified with AAA (87% Intact-Repairs, 13% Rupture-Admissions). Both intact AAA repairs and ruptured AAA admissions decreased significantly between 2004 and 2019 (intact 41,060-34,215,p<.01; ruptured 7,175-4,625,p=.02). Out of all AAA repairs done in a given year, the use of EVAR increased (2004-2019: intact 45%-66%,p<.01; ruptured 10%-55%,p<.01) as well as cEVAR (2010-2019: intact 0%-23%,p<.01; ruptured 0%-14%,p<.01). Mortality after EVAR of intact AAAs decreased significantly by 29% (2004-2019, 0.73%-0.52%,p<.01) while mortality after OAR increased significantly by 16% (2004-2019, 4.4%-5.1%,p<.01). In the study, 27,443 patients were identified with TAAA (80% Intact, 20% Ruptured). In the same period, intact TAAA repairs trended upwards (2004-2019 1,435-1,640,p=.055) and cEVAR became the most common approach (2004-2019, 3.8%-72%,p=.055). 141,651 patients were identified with ascending, arch, or descending TAA (90% Intact, 10% Ruptured). Intact TAA repairs increased significantly (2004-2019 4,380-10,855,p<.01). From 2017-2019, the mortality after OAR of descending TAAs increased and mortality after TEVAR decreased (2017-2019: OAR 1.6%-3.1%; TEVAR 5.2%-3.8%). CONCLUSION: Both intact AAA repairs and ruptured AAA admissions significantly decreased between 2004 and 2019. The use of endovascular techniques for the repair of all aortic aneurysm locations, both intact and ruptured, increased over the past two decades. Most recently in 2019, 89% of intact AAAs repairs, infrarenal through suprarenal, were endovascular (EVAR or cEVAR, respectively). cEVAR alone has risen to 23% of intact AAA repairs in 2019, from 0% a decade earlier. In this period of innovation, with many new options to repair aortic aneurysms while maintaining arterial branches, endovascular repair is now used for the majority of all intact aortic aneurysm repairs. Long-term data are needed to evaluate the durability of these procedures.

3.
J Vasc Surg ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906431

RESUMEN

OBJECTIVE: Renal failure is a predictor of adverse outcomes in carotid revascularization. There has been debate regarding the benefit of revascularization in patients with severe chronic kidney disease or on dialysis. METHODS: Patients in the Vascular Quality Initiative undergoing transcarotid artery revascularization (TCAR), transfemoral carotid artery stenting (tfCAS), or CEA between 2016 and 2023 with an estimated glomerular filtration rate (eGFR) of <30 mL/min/1.73 m2 or on dialysis were included. Patients were divided into cohorts based on procedure. Additional analyses were performed for patients on dialysis only and by symptomatology. Primary outcomes were perioperative stroke/death/myocardial infarction (MI) (SDM). Secondary outcomes included perioperative death, stroke, MI, cranial nerve injury, and stroke/death. Inverse probability of treatment weighting was performed based on treatment assignment to TCAR, tfCAS, and CEA patients and adjusted for demographics, comorbidities, and preoperative symptoms. The χ2 test and multivariable logistic regression analysis were used to evaluate the association of procedure with perioperative outcomes in the weighted cohort. Five-year survival was evaluated using Kaplan-Meier and weighted Cox regression. RESULTS: In the weighted cohort, 13,851 patients with an eGFR of <30 (2506 on dialysis) underwent TCAR (3639; 704 on dialysis), tfCAS (1975; 393 on dialysis), or CEA (8237; 1409 on dialysis) during the study period. Compared with TCAR, CEA had higher odds of SDM (2.8% vs 3.6%; adjusted odds ratio [aOR], 1.27; 95% confidence interval [CI], 1.00-1.61; P = .049), and MI (0.7% vs 1.5%; aOR, 2.00; 95% CI, 1.31-3.05; P = .001). Compared with TCAR, rates of SDM (2.8% vs 5.8%), stroke (1.2% vs 2.6%), and death (0.9% vs 2.4%) were all higher for tfCAS. In asymptomatic patients CEA patients had higher odds of MI (0.7% vs 1.3%; aOR, 1.85; 95% CI, 1.15-2.97; P = .011) and cranial nerve injury (0.3% vs 1.9%; aOR, 7.23; 95% CI, 3.28-15.9; P < .001). Like in the primary analysis, asymptomatic tfCAS patients demonstrated higher odds of death and stroke/death. Symptomatic CEA patients demonstrated no difference in stroke, death, or stroke/death. Although tfCAS patients demonstrated higher odds of death, stroke, MI, stroke/death, and SDM. In both groups, the 5-year survival was similar for TCAR and CEA (eGFR <30, 75.1% vs 74.2%; aHR, 1.06; P = .3) and lower for tfCAS (eGFR <30, 75.1% vs 70.4%; aHR, 1.44; P < .001). CONCLUSIONS: CEA and TCAR had similar odds of stroke and death and are both a reasonable choice in this population; however, TCAR may be better in patients with an increased risk of MI. Additionally, tfCAS patients were more likely to have worse outcomes after weighting for symptom status. Finally, although patients with a reduced eGFR have worse outcomes than their healthy peers, this analysis shows that the majority of patients survive long enough to benefit from the potential stroke risk reduction provided by all revascularization procedures.

4.
J Vasc Surg ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880179

RESUMEN

OBJECTIVE: Prior literature has found worse outcomes for female patients after endovascular repair of abdominal aortic aneurysm and mixed findings after thoracic endovascular aortic repair (TEVAR) for thoracic aortic aneurysm. However, the influence of sex on outcomes after TEVAR for acute type B aortic dissection (aTBAD) is not fully elucidated. METHODS: We identified patients who underwent TEVAR for aTBAD (<30 days) in the Vascular Quality Initiative from 2014 to 2022. We excluded patients with an entry tear or stent seal within the ascending aorta or aortic arch and patients with an unknown proximal tear location. Included patients were stratified by biological sex, and we analyzed perioperative outcomes and 5-year mortality with multivariable logistic regression and Cox regression analysis, respectively. Furthermore, we analyzed adjusted variables for interaction with female sex. RESULTS: We included 1626 patients, 33% of whom were female. At presentation, female patients were significantly older (65 [interquartile range: 54, 75] years vs 56 [interquartile range: 49, 68] years; P = .01). Regarding indications for repair, female patients had higher rates of pain (85% vs 80%; P = .02) and lower rates of malperfusion (23% vs 35%; P < .001), specifically mesenteric, renal, and lower limb malperfusion. Female patients had a lower proportion of proximal repairs in zone 2 (39% vs 48%; P < .01). After TEVAR for aTBAD, female sex was associated with comparable odds of perioperative mortality to males (8.1 vs 9.2%; adjusted odds ratio [aOR]: 0.79 [95% confidence interval (CI): 0.51-1.20]). Regarding perioperative complications, female sex was associated with lower odds for cardiac complications (2.3% vs 4.7%; aOR: 0.52 [95% CI: 0.26-0.97]), but all other complications were comparable between sexes. Compared with male sex, female sex was associated with similar risk for 5-year mortality (26% vs 23%; adjusted hazard ratio: 1.01 [95% CI: 0.77-1.32]). On testing variables for interaction with sex, female sex was associated with lower perioperative and 5-year mortality at older ages relative to males (aOR: 0.96 [0.93-0.99] | adjusted hazard ratio: 0.97 [0.95-0.99]) and higher odds of perioperative mortality when mesenteric malperfusion was present (OR: 2.71 [1.04-6.96]). CONCLUSIONS: Female patients were older, less likely to have complicated dissection, and had more distal proximal landing zones. After TEVAR for aTBAD, female sex was associated with similar perioperative and 5-year mortality to male sex, but lower odds of in-hospital cardiac complications. Interaction analysis showed that females were at additional risk for perioperative mortality when mesenteric ischemia was present. These data suggest that TEVAR for aTBAD overall has a similar safety profile in females as it does for males.

5.
J Vasc Surg ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880180

RESUMEN

OBJECTIVE: In patients undergoing elective thoracic endovascular aortic repair (TEVAR) and left subclavian artery (LSA) coverage, routine preoperative LSA revascularization is recommended. However, in the current endovascular era, the optimal surgical approach is debated. We compared baseline characteristics, procedural details, and perioperative outcomes of patients undergoing open or endovascular LSA revascularization in the setting of TEVAR. METHODS: Adult patients undergoing TEVAR with zone 2 proximal landing and LSA revascularization between 2013 and 2023 were identified in the Vascular Quality Initiative. We excluded patients with traumatic aortic injury, aortic thrombus, or ruptured presentations, and stratified based on revascularization type (open vs any endovascular). Open LSA revascularization included surgical bypass or transposition. Endovascular LSA revascularization included single-branch, fenestration, or parallel stent grafting. Primary outcomes were stroke, spinal cord ischemia (SCI), and perioperative mortality (Pearson's χ2 test). Multivariable logistic regression was used to evaluate associations between revascularization type and primary outcomes. Secondarily, we studied other in-hospital complications and 5-year mortality (Kaplan-Meier, multivariable Cox regression). Sensitivity analyses were performed in patients undergoing concomitant LSA revascularization to TEVAR. RESULTS: Of 2489 patients, 1842 (74%) underwent open and 647 (26%) endovascular LSA revascularization. Demographics and comorbidities were similar between open and endovascular cohorts. Compared with open, endovascular revascularization had shorter procedure times (median, 135 minutes vs 174 minutes; P < .001), longer fluoroscopy times (median, 23 minutes vs 16 minutes; P < .001), lower estimated blood loss (median, 100 mL vs 123 mL; P < .001), and less preoperative spinal drain use (40% vs 49%; P < .001). Patients undergoing endovascular revascularization were more likely to present urgently (24% vs 19%) or emergently (7.4% vs 3.4%) (P < .001). Compared with open, endovascular patients experienced lower stroke rates (2.6% vs 4.8%; P = .026; adjusted odd ratio [aOR], 0.50 [95% confidence interval (CI), 0.25-0.90]), but had comparable SCI (2.9% vs 3.5%; P = .60; aOR, 0.64 [95% CI, 0.31-1.22]) and perioperative mortality (3.1% vs 3.3%; P = .94; aOR, 0.71 [95% CI, 0.34-1.37]). Compared with open, endovascular LSA revascularization had lower rates of overall composite in-hospital complications (20% vs 27%; P < .001; aOR, 0.64 [95% CI, 0.49-0.83]) and shorter overall hospital stay (7 vs 8 days; P < .001). After adjustment, 5-year mortality was similar among groups (adjusted hazard ratio, 0.85; 95% CI, 0.64-1.13). Sensitivity analyses supported the primary analysis with similar outcomes. CONCLUSIONS: In patients undergoing TEVAR starting in zone 2, endovascular LSA revascularization had lower rates of postoperative stroke and overall composite in-hospital complications, but similar SCI, perioperative mortality, and 5-year mortality rates compared with open LSA revascularization. Future comparative studies are needed to evaluate the mid- to long-term safety of endovascular LSA revascularization and assess differences between specific endovascular techniques.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38871213

RESUMEN

OBJECTIVE: One year aneurysm sac dynamics after endovascular abdominal aortic aneurysm repair (EVAR) were independently associated with greater risk of all-cause mortality in prior registry studies but were limited in completeness and granularity. This retrospective analysis aimed to study the impact of sac dynamics on survival within the Endurant Stent Graft Global Registry (ENGAGE) with five year follow up. METHODS: A total of 1 263 subjects were enrolled in the ENGAGE Registry between March 2009 and April 2011. One year aneurysm sac changes were calculated from one month post-operative imaging scans and the scan closest to the time of one year follow up. Sac regression was defined as a sac decrease of ≥ 5 mm and sac expansion as aneurysm sac growth ≥ 5 mm. The primary outcome was rate of five year all-cause mortality. Kaplan-Meier estimates for freedom from all-cause mortality were calculated. Multivariable Cox regression was used to determine the association between sac dynamics and all-cause mortality. RESULTS: At one year, 441 of the 949 study participants with appropriate imaging (46%) had abdominal aortic aneurysm sac regression, 462 (49%) remained stable, and 46 (4.8%) had sac expansion. For patients with sac regression, five year all-cause mortality was 20%, compared with 28% for stable sac (p = .007) and 37% for the sac expansion (p = .010) cohorts. After adjustment, sac expansion and stable sac cohorts were associated with greater all-cause mortality (expansion: hazard ratio [HR] 1.8; 95% CI 1.1 - 3.2; p = .032; stable: HR 1.4; 95% CI 1.1 - 1.9; p = .019). CONCLUSION: In the ENGAGE Global Registry, one year rate of sac regression was 46%, and one year sac regression was observed to be associated with greater five year survival, corroborating prior findings utilising data from vascular registries. Sac regression could become the new standard for success after EVAR.

8.
J Vasc Surg ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38904580

RESUMEN

OBJECTIVE: Despite regulatory challenges, device availability, and rapidly expanding techniques, off-label endovascular repair of complex aortic aneurysms (cAAs) has expanded in the past decade. Given the lack of United States Food and Drug Administration-approved endovascular technology to treat cAAs, we performed a national census to better understand volume and current practice patterns in the United States. METHODS: Targeted sampling identified vascular surgeons with experience in off-label endovascular repair of cAAs. An electronic survey was distributed with institutional review board approval from the University of Rochester to 261 individuals with a response rate of 38% (n = 98). RESULTS: A total of 93 respondents (95%) reported off-label endovascular repair of cAAs. Mean age was 45.7 ± 8.3 years, and 84% were male. Most respondents (59%) were within the first 10 years of practice, and 69% trained at institutions with a high-volume of off-label endovascular procedures for complex aortic aneurysms with or without a physician-sponsored investigational device exemption (PS-IDE). Twelve respondents from 11 institutions reported institutional PS-IDEs for physician-modified endografts (PMEGs), in-situ laser fenestration (ISLF), or parallel grafting technique (PGT), including sites with PS-IDEs for custom-manufactured devices. Eighty-nine unique institutions reported elective off-label endovascular repair with a mean of 20.2 ± 16.5 cases/year and ∼1757 total cases/year nationally. Eighty reported urgent/emergent off-label endovascular repair with a mean of 5.7 ± 5.4 cases/year and ∼499 total cases/year nationally. There was no correlation between high-volume endovascular institutions (>15 cases/year) and institutions with high volumes of open surgical repair for cAAs (>15 cases/year; odds ratio, 0.7; 95% confidence interval, 0.3-1.5; P = .34). Elective techniques included PMEG (70%), ISLF (30%), hybrid PMEG/ISLF (18%), and PGT (14%), with PMEG being the preferred technique for 63% of respondents. Techniques for emergent endovascular treatment of complex aortic disease included PMEG (52%), ISLF (40%), PGT (20%), and hybrid-PMEG/ISLF (14%), with PMEG being the preferred technique for 41% of respondents. Thirty-nine percent of respondents always or frequently offer referrals to institutions with PS-IDEs for custom-manufactured devices. The most common barrier for referral to PS-IDE centers included geographic distance (48%), longitudinal relationship with patient (45%), and costs associated with travel (33%). Only 61% of respondents participate in the Vascular Quality Initiative for complex endovascular aneurysm repair, and only 57% maintain a prospective institutional database. Eighty-six percent reported interest in a national collaborative database for off-label endovascular repair of cAA. CONCLUSIONS: Estimates of off-label endovascular repair of cAAs are likely underrepresented in the literature based on this national census. PMEG was the most common technique for elective and emergent procedures. Under-reported off-label endovascular repair of cAA outcomes data appears to be limited by non-standardized PS-IDE reporting to the United States Food and Drug Administration, and the lack of Vascular Quality Initiative participation and prospective institutional data collection. Most participants are interested in a national collaborative database for endovascular repair of cAAs.

9.
J Vasc Surg ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729586

RESUMEN

OBJECTIVE: Thoracic endovascular aortic repair (TEVAR) in patients with genetic aortopathies (GA) is controversial, given concerns of durability. We describe characteristics and outcomes after TEVAR in patients with GA. METHODS: All patients undergoing TEVAR between 2010 and 2023 in the Vascular Quality Iniatitive were identified and categorized as having a GA or not. Demographics, baseline, and procedural characteristics were compared among groups. Multivariable logistic regression was used to evaluate the independent association of GA with postoperative outcomes. Kaplan-Meier methods and multivariable Cox regression analyses were used to evaluate 5-year survival and 2-year reinterventions. RESULTS: Of 19,340 patients, 304 (1.6%) had GA (87% Marfan syndrome, 9% Loeys-Dietz syndrome, and 4% vascular Ehlers-Danlos syndrome). Compared with patients without GA, patients with GA were younger (50 years [interquartile range, 37-72 years] vs 70 years [interquartile range, 61-77 years]), more often presented with acute dissection (28% vs 18%), postdissection aneurysm (48% vs 17%), had a symptomatic presentation (50% vs 39%), and were less likely to have degenerative aneurysms (18% vs 47%) or penetrating aortic ulcer (and intramural hematoma) (3% vs 13%) (all P < .001). Patients with GA were more likely to have prior repair of the ascending aorta/arch (open, 56% vs 11% [P < .001]; endovascular, 5.6% vs 2.1% [P = .017]) or the descending thoracic aorta (open, 12% vs 2% [P = .007]; endovascular, 8.2% vs 3.6% [P = .011]). No significant differences were found in prior abdominal suprarenal repairs; however, patients with GA had more prior open infrarenal repairs (5.3% vs 3.2%), but fewer prior endovascular infrarenal repairs (3.3% vs 5.5%) (all P < .05). After adjusting for demographics, comorbidities, and disease characteristics, patients with GA had similar odds of perioperative mortality (4.6% vs 7.0%; adjusted odds ratio [aOR], 1.1; 95% confidence interval [CI], 0.57-1.9; P = .75), any in-hospital complication (26% vs 23%; aOR, 1.24; 95% CI, 0.92-1.6; P = .14), or in-hospital reintervention (13% vs 8.3%; aOR, 1.25; 95% CI, 0.84-1.80; P = .25) compared with patients without GA. However, patients with GA had a higher likelihood of postoperative vasopressors (33% vs 27%; aOR, 1.44; 95% CI, 1.1-1.9; P = .006) and transfusion (25% vs 23%; aOR, 1.39; 95% CI, 1.03-1.9; P = .006). The 2-year reintervention rates were higher in patients with GA (25% vs 13%; adjusted hazard ratio, 1.99; 95% CI, 1.4-2.9; P < .001), but 5-year survival was similar (81% vs 74%; adjusted hazard ratio, 1.02; 95% CI, 0.70-1.50; P = .1). CONCLUSIONS: TEVAR for patients with GA seemed to be safe initially, with similar odds for in-hospital complications, in-hospital reinterventions, and perioperative mortality, as well as similar hazards for 5-year mortality compared with patients without GA. However, patients with GA had higher 2-year reintervention rates. Future studies should assess long-term durability after TEVAR compared with the recommended open repair to appropriately weigh the risks and benefits of endovascular treatment in patients with GA.

10.
J Vasc Surg ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763455

RESUMEN

OBJECTIVE: Postoperative day-one discharge is used as a quality-of-care indicator after carotid revascularization. This study identifies predictors of prolonged length of stay (pLOS), defined as a postprocedural LOS of >1 day, after elective carotid revascularization. METHODS: Patients undergoing carotid endarterectomy (CEA), transcarotid artery revascularization (TCAR), and transfemoral carotid artery stenting (TFCAS) in the Vascular Quality Initiative between 2016 and 2022 were included in this analysis. Multivariable logistic regression analysis was used to identify predictors of pLOS, defined as a postprocedural LOS of >1 day, after each procedure. RESULTS: A total of 118,625 elective cases were included. pLOS was observed in nearly 23.2% of patients undergoing carotid revascularization. Major adverse events, including neurological, cardiac, infectious, and bleeding complications, occurred in 5.2% of patients and were the most significant contributor to pLOS after the three procedures. Age, female sex, non-White race, insurance status, high comorbidity index, prior ipsilateral CEA, non-ambulatory status, symptomatic presentation, surgeries occurring on Friday, and postoperative hypo- or hypertension were significantly associated with pLOS across all three procedures. For CEA, additional predictors included contralateral carotid artery occlusion, preoperative use of dual antiplatelets and anticoagulation, low physician volume (<11 cases/year), and drain use. For TCAR, preoperative anticoagulation use, low physician case volume (<6 cases/year), no protamine use, and post-stent dilatation intraoperatively were associated with pLOS. One-year analysis showed a significant association between pLOS and increased mortality for all three procedures; CEA (hazard ratio [HR],1.64; 95% confidence interval [CI], 1.49-1.82), TCAR (HR,1.56; 95% CI, 1.35-1.80), and TFCAS (HR, 1.33; 95%CI, 1.08-1.64) (all P < .05). CONCLUSIONS: A postoperative LOS of more than 1 day is not uncommon after carotid revascularization. Procedure-related complications are the most common drivers of pLOS. Identifying patients who are risk for pLOS highlights quality improvement strategies that can optimize short and 1-year outcomes of patients undergoing carotid revascularization.

11.
Circ Cardiovasc Qual Outcomes ; 17(6): e010374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38775052

RESUMEN

BACKGROUND: Endovascular aortic aneurysm repair (EVAR) has had a dynamic impact on abdominal aortic aneurysm (AAA) care, often supplanting open AAA repair (OAR). Accordingly, US AAA management is often highlighted by disparities in patient selection and guideline compliance. The purpose of this analysis was to define secular trends in AAA care. METHODS: The Society for Vascular Surgery Vascular Quality Initiative was queried for all EVARs and OARs (2011-2021). End points included procedure utilization, change in mortality, patient risk profile, Society for Vascular Surgery-endorsed diameter compliance, off-label EVAR use, cross-clamp location, blood loss, in-hospital complications, and post-EVAR surveillance missingness. Linear regression was used without risk adjustment for all end points except for mortality and complications, for which logistic regression with risk adjustment was used. RESULTS: In all, 66 609 EVARs (elective, 85% [n=55 805] and nonelective, 15% [n=9976]) and 13 818 OARs (elective, 70% [n=9706] and nonelective, 30% [n=4081]) were analyzed. Elective EVAR:OAR ratios were increased (0.2 per year [95% CI, 0.01-0.32]), while nonelective ratios were unchanged. Elective diameter threshold noncompliance decreased for OAR (24%→17%; P=0.01) but not EVAR (mean, 37%). Low-risk patients increasingly underwent elective repairs (EVAR, +0.4%per year [95% CI, 0.2-0.6]; OAR, +0.6 points per year [95% CI, 0.2-1.0]). Off-label EVAR frequency was unchanged (mean, 39%) but intraoperative complications decreased (0.5% per year [95% CI, 0.2-0.9]). OAR complexity increased reflecting greater suprarenal cross-clamp rates (0.4% per year [95% CI, 0.1-0.8]) and blood loss (33 mL/y [95% CI, 19-47]). In-hospital complications decreased for elective (0.7% per year [95% CI, 0.4-0.9]) and nonelective EVAR (1.7% per year [95% CI, 1.1-2.3]) but not OAR (mean, 42%). A 30-day mortality was unchanged for both elective OAR (mean, 4%) and EVAR (mean, 1%). Among nonelective OARs, an increase in both 30-day (0.8% per year [95% CI, 0.1-1.5]) and 1-year mortality (0.8% per year [95% CI, 0.3-1.6]) was observed. Postoperative EVAR surveillance acquisition decreased (67%→49%), while 1-year mortality among patients without imaging was 4-fold greater (9.2% versus imaging, 2.0%; odds ratio, 4.1 [95% CI, 3.8-4.3]; P<0.0001). CONCLUSIONS: There has been an increase in EVAR and a corresponding reduction in OAR across the United States, despite established concerns surrounding guideline adherence, reintervention, follow-up, and cost. Although EVAR morbidity has declined, OAR complication rates remain unchanged and unexpectedly high. Opportunities remain for improving AAA care delivery, patient and procedure selection, guideline compliance, and surveillance.


Asunto(s)
Aneurisma de la Aorta Abdominal , Implantación de Prótesis Vascular , Procedimientos Endovasculares , Complicaciones Posoperatorias , Humanos , Aneurisma de la Aorta Abdominal/cirugía , Aneurisma de la Aorta Abdominal/mortalidad , Estados Unidos/epidemiología , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/mortalidad , Procedimientos Endovasculares/tendencias , Factores de Tiempo , Factores de Riesgo , Femenino , Resultado del Tratamiento , Anciano , Masculino , Complicaciones Posoperatorias/mortalidad , Complicaciones Posoperatorias/epidemiología , Medición de Riesgo , Implantación de Prótesis Vascular/efectos adversos , Implantación de Prótesis Vascular/mortalidad , Implantación de Prótesis Vascular/tendencias , Adhesión a Directriz/tendencias , Indicadores de Calidad de la Atención de Salud/tendencias , Pautas de la Práctica en Medicina/tendencias , Bases de Datos Factuales , Anciano de 80 o más Años , Estudios Retrospectivos , Evaluación de Procesos y Resultados en Atención de Salud/tendencias , Sistema de Registros , Procedimientos Quirúrgicos Electivos/tendencias , Procedimientos Quirúrgicos Electivos/efectos adversos
12.
Circ Cardiovasc Interv ; 17(6): e013842, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38708595

RESUMEN

BACKGROUND: An increasing number of interventional procedures require large-sheath technology (>12F) with a favorable outcome with endovascular rather than open surgical access. However, vascular complications are a limitation for the management of these patients. This trial aimed to determine the effectiveness and safety of the Cross-Seal suture-mediated vascular closure device in obtaining hemostasis at the target limb access site following interventional procedures using 8F to 18F procedural sheaths. METHODS: The Cross-Seal IDE trial (Investigational Device Exemption) was a prospective, single-arm, multicenter study in subjects undergoing percutaneous endovascular procedures utilizing 8F to 18F ID procedural sheaths. The primary efficacy end point was time to hemostasis at the target limb access site. The primary safety end point was freedom from major complications of the target limb access site within 30 days post procedure. RESULTS: A total of 147 subjects were enrolled between August 9, 2019, and March 12, 2020. Transcatheter aortic valve replacement was performed in 53.7% (79/147) and percutaneous endovascular abdominal/thoracic aortic aneurysm repair in 46.3% (68/147) of subjects. The mean sheath ID was 15.5±1.8 mm. The primary effectiveness end point of time to hemostasis was 0.4±1.4 minutes. An adjunctive intervention was required in 9.2% (13/142) of subjects, of which 2.1% (3/142) were surgical and 5.6% (8/142) endovascular. Technical success was achieved in 92.3% (131/142) of subjects. Freedom from major complications of the target limb access site was 94.3% (83/88). CONCLUSIONS: In selected patients undergoing percutaneous endovascular procedures utilizing 8F to 18F ID procedural sheath, Cross-Seal suture-mediated vascular closure device achieved favorable effectiveness and safety in the closure of the large-bore arteriotomy. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03756558.


Asunto(s)
Procedimientos Endovasculares , Técnicas Hemostáticas , Técnicas de Sutura , Dispositivos de Cierre Vascular , Humanos , Estudios Prospectivos , Masculino , Femenino , Anciano , Técnicas Hemostáticas/instrumentación , Técnicas Hemostáticas/efectos adversos , Resultado del Tratamiento , Factores de Tiempo , Técnicas de Sutura/efectos adversos , Técnicas de Sutura/instrumentación , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/instrumentación , Anciano de 80 o más Años , Diseño de Equipo , Punciones , Cateterismo Periférico/efectos adversos , Cateterismo Periférico/instrumentación , Hemorragia/prevención & control , Hemorragia/etiología , Persona de Mediana Edad , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Reemplazo de la Válvula Aórtica Transcatéter/instrumentación , Factores de Riesgo , Aneurisma de la Aorta Abdominal/cirugía , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Implantación de Prótesis Vascular/efectos adversos , Implantación de Prótesis Vascular/instrumentación , Aneurisma de la Aorta Torácica/cirugía , Aneurisma de la Aorta Torácica/diagnóstico por imagen
14.
Ann Vasc Surg ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754578

RESUMEN

Chronic limb threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease and represents a particularly high-risk subgroup of patients. As such, efforts to better understand this complex patient population through well-designed clinical research studies are critical to improving CLTI care. Prospective randomized clinical trials (RCTs) remain the gold standard in clinical research, but these trials are resource-intensive and have highly selective patient populations, which limit their feasibility and generalizability. Alternatively, retrospective studies are less expensive than RCTs, have a larger sample size, and are more generalizable owing to a broader patient population. Health care administrative data provide rich sources of information that may be used for research purposes and are increasingly being used for the study of vascular surgery conditions, including CLTI. Although administrative data are collected for billing purposes, they may be leveraged to study a broad range of topics in vascular surgery including those related to health care delivery, epidemiology, health disparities, and outcomes. This review provides an overview of administrative data available for CLTI research, the strengths and limitations of these data sources, current areas of investigation, and future opportunities for further study with the goal of improving outcomes in this high-risk population.

15.
Ann Vasc Surg ; 105: 218-226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38599489

RESUMEN

BACKGROUND: Distal internal carotid artery (ICA) stenting may be employed as a bailout maneuver when an inadequate end point or clamp injury is encountered at the time of carotid endarterectomy (CEA) in a surgically inaccessible region of the distal ICA. We sought to characterize the indications, technique, and outcomes for this infrequently encountered clinical scenario. METHODS: We performed a retrospective review of all patients who underwent distal ICA stenting at the time of CEA at our institution between September 2008 and July 2022. Procedural details and postoperative follow-up were reviewed for each patient. RESULTS: Six patients were identified during the study period. All were male with an age range of 63 to 82 years. Five underwent carotid revascularization for asymptomatic carotid artery stenosis, and one patient was treated for amaurosis fugax. Three patients were on dual antiplatelet therapy preoperatively, whereas 2 were on aspirin monotherapy, and one was on aspirin and low-dose rivaroxaban. Five patients underwent CEA with patch angioplasty, and one underwent eversion CEA. The indication for stenting was distal ICA dissection due to clamp or shunt injury in 2 patients and an inadequate distal ICA end point in 4 patients. In all cases, access for stenting was obtained under direct visualization within the common carotid artery, and a standard carotid stent was deployed with its proximal aspect landing within the endarterectomized site. Embolic protection was typically achieved via proximal common carotid artery and external carotid artery clamping for flow arrest with aspiration of debris before restoration of antegrade flow. There was 100% technical success. Postoperatively, 2 patients were found to have a cranial nerve injury, likely occurring due to the need for high ICA exposure. Median length of stay was 2 days (range 1-7 days) with no instances of perioperative stroke or myocardial infarction. All patients were discharged on dual antiplatelet therapy with no further occurrence of stroke, carotid restenosis, or reintervention through a median follow-up of 17 months. CONCLUSIONS: Distal ICA stenting is a useful adjunct in the setting of CEA complicated by inadequate end point or vessel dissection in a surgically inaccessible region of the ICA and can minimize the need for high-risk extensive distal dissection of the ICA in this situation.


Asunto(s)
Arteria Carótida Interna , Estenosis Carotídea , Endarterectomía Carotidea , Stents , Humanos , Endarterectomía Carotidea/efectos adversos , Masculino , Anciano , Estudios Retrospectivos , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/cirugía , Estenosis Carotídea/complicaciones , Persona de Mediana Edad , Resultado del Tratamiento , Anciano de 80 o más Años , Arteria Carótida Interna/cirugía , Arteria Carótida Interna/diagnóstico por imagen , Factores de Tiempo , Factores de Riesgo , Inhibidores de Agregación Plaquetaria/uso terapéutico , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/instrumentación
17.
J Vasc Surg ; 80(1): 138-150.e8, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428653

RESUMEN

OBJECTIVE: With the recent expansion of the Centers for Medicare and Medicaid Services coverage, transfemoral carotid artery stenting (tfCAS) is expected to play a larger role in the management of carotid disease. Existing research on the tfCAS learning curve, primarily conducted over a decade ago, may not adequately describe the current effect of physician experience on outcomes. Because approximately 30% of perioperative strokes/deaths post-CAS occur after discharge, appropriate thresholds for in-hospital event rates have been suggested to be <4% for symptomatic and <2% for asymptomatic patients. This study evaluates the tfCAS learning curve using Vascular Quality Initiative (VQI) data. METHODS: We identified VQI patients who underwent tfCAS between 2005 and 2023. Each physician's procedures were chronologically grouped into 12 categories, from procedure counts 1-25 to 351+. The primary outcome was in-hospital stroke/death rate; secondary outcomes were in-hospital stroke/death/myocardial infarction (MI), 30-day mortality, in-hospital stroke/transient ischemic attack (stroke/TIA), and access site complications. The relationship between outcomes and procedure counts was analyzed using the Cochran-Armitage test and a generalized linear model with restricted cubic splines. Our results were then validated using a generalized estimating equations model to account for the variability between physicians. RESULTS: We analyzed 43,147 procedures by 2476 physicians. In symptomatic patients, there was a decrease in rates of in-hospital stroke/death (procedure counts 1-25 to 351+: 5.2%-1.7%), in-hospital stroke/death/MI (5.8%-1.7%), 30-day mortality (4.6%-2.8%), in-hospital stroke/TIA (5.0%-1.1%), and access site complications (4.1%-1.1%) as physician experience increased (all P values < .05). The in-hospital stroke/death rate remained above 4% until 235 procedures. Similarly, in asymptomatic patients, there was a decrease in rates of in-hospital stroke/death (2.1%-1.6%), in-hospital stroke/death/MI (2.6%-1.6%), 30-day mortality (1.7%-0.4%), and in-hospital stroke/TIA (2.8%-1.6%) with increasing physician experience (all P values <.05). The in-hospital stroke/death rate remained above 2% until 13 procedures. CONCLUSIONS: In-hospital stroke/death and 30-day mortality rates after tfCAS decreased with increasing physician experience, showing a lengthy learning curve consistent with previous reports. Given that physicians' early cases may not be included in the VQI, the learning curve was likely underestimated. Nevertheless, a substantially high rate of in-hospital stroke/death was found in physicians' first 25 procedures. With the recent Centers for Medicare and Medicaid Services coverage expansion for tfCAS, a significant number of physicians would enter the early stage of the learning curve, potentially leading to increased postoperative complications.


Asunto(s)
Competencia Clínica , Arteria Femoral , Mortalidad Hospitalaria , Curva de Aprendizaje , Sistema de Registros , Stents , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Anciano , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/mortalidad , Estados Unidos , Factores de Tiempo , Factores de Riesgo , Resultado del Tratamiento , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/mortalidad , Estudios Retrospectivos , Anciano de 80 o más Años , Cateterismo Periférico/efectos adversos , Cateterismo Periférico/mortalidad , Indicadores de Calidad de la Atención de Salud , Persona de Mediana Edad , Punciones , Estenosis Carotídea/mortalidad , Estenosis Carotídea/cirugía , Estenosis Carotídea/terapia , Estenosis Carotídea/diagnóstico por imagen , Infarto del Miocardio/mortalidad , Infarto del Miocardio/etiología , Medición de Riesgo , Enfermedades de las Arterias Carótidas/mortalidad , Enfermedades de las Arterias Carótidas/cirugía , Enfermedades de las Arterias Carótidas/terapia , Ataque Isquémico Transitorio/etiología
18.
J Vasc Surg ; 80(1): 53-63.e3, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38431064

RESUMEN

OBJECTIVE: Thoracic endovascular aortic repair (TEVAR) for blunt thoracic aortic injury (BTAI) at high-volume hospitals has previously been associated with lower perioperative mortality, but the impact of annual surgeon volume on outcomes following TEVAR for BTAI remains unknown. METHODS: We analyzed Vascular Quality Initiative (VQI) data from patients with BTAI that underwent TEVAR between 2013 and 2023. Annual surgeon volumes were computed as the number of TEVARs (for any pathology) performed over a 1-year period preceding each procedure and were further categorized into quintiles. Surgeons in the first volume quintile were categorized as low volume (LV), the highest quintile as high volume (HV), and the middle three quintiles as medium volume (MV). TEVAR procedures performed by surgeons with less than 1-year enrollment in the VQI were excluded. Using multilevel logistic regression models, we evaluated associations between surgeon volume and perioperative outcomes, accounting for annual center volumes and adjusting for potential confounders, including aortic injury grade and severity of coexisting injuries. Multilevel models accounted for the nested clustering of patients and surgeons within the same center. Sensitivity analysis excluding patients with grade IV BTAI was performed. RESULTS: We studied 1321 patients who underwent TEVAR for BTAI (28% by LV surgeons [0-1 procedures per year], 52% by MV surgeons [2-8 procedures per year], 20% by HV surgeons [≥9 procedures per year]). With higher surgeon volume, TEVAR was delayed more (in <4 hours: LV: 68%, MV: 54%, HV: 46%; P < .001; elective (>24 hours): LV: 5.1%; MV: 8.9%: HV: 14%), heparin administered more (LV: 80%, MV: 81%, HV: 87%; P = .007), perioperative mortality appears lower (LV: 11%, MV: 7.3%, HV: 6.5%; P = .095), and ischemic/hemorrhagic stroke was lower (LV: 6.5%, MV: 3.6%, HV: 1.5%; P = .006). After adjustment, compared with LV surgeons, higher volume surgeons had lower odds of perioperative mortality (MV: 0.49; 95% confidence interval [CI], 0.25-0.97; P = .039; HV: 0.45; 95% CI, 0.16-1.22; P = .12; MV/HV: 0.50; 95% CI, 0.26-0.96; P = .038) and ischemic/hemorrhagic stroke (MV: 0.38; 95% CI, 0.18-0.81; P = .011; HV: 0.16; 95% CI, 0.04-0.61; P = .008). Sensitivity analysis found lower adjusted odds for perioperative mortality (although not significant) and ischemic/hemorrhagic stroke for higher volume surgeons. CONCLUSIONS: In patients undergoing TEVAR for BTAI, higher surgeon volume is independently associated with lower perioperative mortality and postoperative stroke, regardless of hospital volume. Future studies could elucidate if TEVAR for non-ruptured BTAI might be delayed and allow stabilization, heparinization, and involvement of a higher TEVAR volume surgeon.


Asunto(s)
Aorta Torácica , Implantación de Prótesis Vascular , Competencia Clínica , Procedimientos Endovasculares , Hospitales de Alto Volumen , Cirujanos , Lesiones del Sistema Vascular , Heridas no Penetrantes , Humanos , Aorta Torácica/cirugía , Aorta Torácica/lesiones , Aorta Torácica/diagnóstico por imagen , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/mortalidad , Heridas no Penetrantes/cirugía , Heridas no Penetrantes/mortalidad , Masculino , Femenino , Lesiones del Sistema Vascular/cirugía , Lesiones del Sistema Vascular/mortalidad , Lesiones del Sistema Vascular/diagnóstico por imagen , Persona de Mediana Edad , Resultado del Tratamiento , Estudios Retrospectivos , Factores de Tiempo , Factores de Riesgo , Adulto , Implantación de Prótesis Vascular/efectos adversos , Implantación de Prótesis Vascular/mortalidad , Medición de Riesgo , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/mortalidad , Complicaciones Posoperatorias/cirugía , Traumatismos Torácicos/cirugía , Traumatismos Torácicos/mortalidad , Hospitales de Bajo Volumen , Estados Unidos , Bases de Datos Factuales , Anciano , Reparación Endovascular de Aneurismas
19.
J Vasc Surg ; 80(1): 98-106, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38490605

RESUMEN

OBJECTIVE: The vast majority of patients with abdominal aortic aneurysms (AAAs) undergoing repairs receive endovascular interventions (EVARs) instead of open operations (OARs). Although EVARs have better short-term outcomes, OARs have improved longer-term durability and require less radiographic follow-up and monitoring, which may have significant implications on health care economics surrounding provision of AAA care nationally. Herein, we compared costs associated with EVAR and OAR of both infrarenal and complex AAAs. METHODS: We examined patients undergoing index elective EVARs or OARs of infrarenal and complex AAAs in the 2014-2019 Vascular Quality Initiative-Vascular Implant Surveillance and Interventional Outcomes Network (VQI-VISION) dataset. We defined overall costs as the aggregated longitudinal costs associated with: (1) the index surgery; (2) reinterventions; and (3) imaging tests. We evaluated overall costs up to 5 years after infrarenal AAA repair and 3 years for complex AAA repair. Multivariable regressions adjusted for case-mix when evaluating cost differences between EVARs vs OARs. RESULTS: We identified 23,746 infrarenal AAA repairs (8.7% OAR, 91% EVAR) and 2279 complex AAA repairs (69% OAR, 31% EVAR). In both cohorts, patients undergoing EVARs were more likely to be older and have more comorbidities. The cost for the index procedure for EVARs relative to OARs was lower for infrarenal AAAs ($32,440 vs $37,488; P < .01) but higher among complex AAAs ($48,870 vs $44,530; P < .01). EVARs had higher annual imaging and reintervention costs during each of the 5 postoperative years for infrarenal aneurysms and the 3 postoperative years for complex aneurysms. Among patients undergoing infrarenal AAA repairs who survived 5 years, the total 5-year cost of EVARs was similar to that of OARs ($35,858 vs $34,212; -$223 [95% confidence interval (CI), -$3042 to $2596]). For complex AAA repairs, the total cost at 3 years of EVARs was greater than OARs ($64,492 vs $42,212; +$9860 [95% CI, $5835-$13,885]). For patients receiving EVARs for complex aneurysms, physician-modified endovascular grafts had higher index procedure costs ($55,835 vs $47,064; P < .01) although similar total costs on adjusted analyses (+$1856 [95% CI, -$7997 to $11,710]; P = .70) relative to Zenith fenestrated endovascular grafts among those that were alive at 3 years. CONCLUSIONS: Longer-term costs associated with EVARs are lower for infrarenal AAAs but higher for complex AAAs relative to OARs, driven by reintervention and imaging costs. Further analyses to characterize the financial viability of EVARs for both infrarenal and complex AAAs should evaluate hospital margins and anticipated changes in costs of devices.


Asunto(s)
Aneurisma de la Aorta Abdominal , Implantación de Prótesis Vascular , Procedimientos Endovasculares , Medicare , Humanos , Aneurisma de la Aorta Abdominal/cirugía , Aneurisma de la Aorta Abdominal/economía , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Procedimientos Endovasculares/economía , Procedimientos Endovasculares/efectos adversos , Masculino , Anciano , Estados Unidos , Femenino , Factores de Tiempo , Medicare/economía , Implantación de Prótesis Vascular/economía , Implantación de Prótesis Vascular/efectos adversos , Resultado del Tratamiento , Anciano de 80 o más Años , Estudios Retrospectivos , Bases de Datos Factuales , Costos de la Atención en Salud , Análisis Costo-Beneficio , Complicaciones Posoperatorias/economía , Complicaciones Posoperatorias/etiología
20.
Expert Rev Cardiovasc Ther ; 22(4-5): 159-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38480465

RESUMEN

INTRODUCTION: Two of the main reasons recent guidelines do not recommend routine population-wide screening programs for asymptomatic carotid artery stenosis (AsxCS) is that screening could lead to an increase of carotid revascularization procedures and that such mass screening programs may not be cost-effective. Nevertheless, selective screening for AsxCS could have several benefits. This article presents the rationale for such a program. AREAS COVERED: The benefits of selective screening for AsxCS include early recognition of AsxCS allowing timely initiation of preventive measures to reduce future myocardial infarction (MI), stroke, cardiac death and cardiovascular (CV) event rates. EXPERT OPINION: Mass screening programs for AsxCS are neither clinically effective nor cost-effective. Nevertheless, targeted screening of populations at high risk for AsxCS provides an opportunity to identify these individuals earlier rather than later and to initiate a number of lifestyle measures, risk factor modifications, and intensive medical therapy in order to prevent future strokes and CV events. For patients at 'higher risk of stroke' on best medical treatment, a prophylactic carotid intervention may be considered.


Asunto(s)
Estenosis Carotídea , Análisis Costo-Beneficio , Tamizaje Masivo , Accidente Cerebrovascular , Humanos , Estenosis Carotídea/diagnóstico , Tamizaje Masivo/métodos , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular/etiología , Guías de Práctica Clínica como Asunto , Factores de Riesgo , Enfermedades Cardiovasculares/prevención & control , Infarto del Miocardio/prevención & control , Infarto del Miocardio/diagnóstico , Enfermedades Asintomáticas , Estilo de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...