Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636539

RESUMEN

Changes in structure and dynamics elicited by agonist ligand binding at the extracellular side of G protein coupled receptors (GPCRs) must be relayed to the cytoplasmic G protein binding side of the receptors. To decipher the role of water-mediated hydrogen-bond networks in this relay mechanism, we have developed graph-based algorithms and analysis methodologies applicable to datasets of static structures of distinct GPCRs. For a reference dataset of static structures of bovine rhodopsin solved at the same resolution, we show that graph analyses capture the internal protein-water hydrogen-bond network. The extended analyses of static structures of rhodopsins and opioid receptors suggest a relay mechanism whereby inactive receptors have in place much of the internal core hydrogen-bond network required for long-distance relay of structural change, with extensive local H-bond clusters observed in structures solved at high resolution and with internal water molecules.

2.
Struct Dyn ; 10(3): 034101, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37275629

RESUMEN

Low-pass spectral analysis (LPSA) is a recently developed dynamics retrieval algorithm showing excellent retrieval properties when applied to model data affected by extreme incompleteness and stochastic weighting. In this work, we apply LPSA to an experimental time-resolved serial femtosecond crystallography (TR-SFX) dataset from the membrane protein bacteriorhodopsin (bR) and analyze its parametric sensitivity. While most dynamical modes are contaminated by nonphysical high-frequency features, we identify two dominant modes, which are little affected by spurious frequencies. The dynamics retrieved using these modes shows an isomerization signal compatible with previous findings. We employ synthetic data with increasing timing uncertainty, increasing incompleteness level, pixel-dependent incompleteness, and photon counting errors to investigate the root cause of the high-frequency contamination of our TR-SFX modes. By testing a range of methods, we show that timing errors comparable to the dynamical periods to be retrieved produce a smearing of dynamical features, hampering dynamics retrieval, but with no introduction of spurious components in the solution, when convergence criteria are met. Using model data, we are able to attribute the high-frequency contamination of low-order dynamical modes to the high levels of noise present in the data. Finally, we propose a method to handle missing observations that produces a substantial dynamics retrieval improvement from synthetic data with a significant static component. Reprocessing of the bR TR-SFX data using the improved method yields dynamical movies with strong isomerization signals compatible with previous findings.

3.
Proc Natl Acad Sci U S A ; 120(15): e2300309120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011209

RESUMEN

Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.


Asunto(s)
Calmodulina , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Calmodulina/metabolismo , Activación del Canal Iónico/fisiología , Microscopía por Crioelectrón , Calcio/metabolismo , Nucleótidos Cíclicos/farmacología , GMP Cíclico/metabolismo
4.
Acta Crystallogr D Struct Biol ; 79(Pt 3): 224-233, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36876432

RESUMEN

Rhodopsin is a G-protein-coupled receptor that detects light and initiates the intracellular signalling cascades that underpin vertebrate vision. Light sensitivity is achieved by covalent linkage to 11-cis retinal, which isomerizes upon photo-absorption. Serial femtosecond crystallography data collected from rhodopsin microcrystals grown in the lipidic cubic phase were used to solve the room-temperature structure of the receptor. Although the diffraction data showed high completeness and good consistency to 1.8 Šresolution, prominent electron-density features remained unaccounted for throughout the unit cell after model building and refinement. A deeper analysis of the diffraction intensities uncovered the presence of a lattice-translocation defect (LTD) within the crystals. The procedure followed to correct the diffraction intensities for this pathology enabled the building of an improved resting-state model. The correction was essential to both confidently model the structure of the unilluminated state and interpret the light-activated data collected after photo-excitation of the crystals. It is expected that similar cases of LTD will be observed in other serial crystallography experiments and that correction will be required in a variety of systems.

5.
Struct Dyn ; 9(4): 044101, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35991704

RESUMEN

Time-resolved serial femtosecond crystallography (TR-SFX) provides access to protein dynamics on sub-picosecond timescales, and with atomic resolution. Due to the nature of the experiment, these datasets are often highly incomplete and the measured diffracted intensities are affected by partiality. To tackle these issues, one established procedure is that of splitting the data into time bins, and averaging the multiple measurements of equivalent reflections within each bin. This binning and averaging often involve a loss of information. Here, we propose an alternative approach, which we call low-pass spectral analysis (LPSA). In this method, the data are projected onto the subspace defined by a set of trigonometric functions, with frequencies up to a certain cutoff. This approach attenuates undesirable high-frequency features and facilitates retrieving the underlying dynamics. A time-lagged embedding step can be included prior to subspace projection to improve the stability of the results with respect to the parameters involved. Subsequent modal decomposition allows to produce a low-rank description of the system's evolution. Using a synthetic time-evolving model with incomplete and partial observations, we analyze the LPSA results in terms of quality of the retrieved signal, as a function of the parameters involved. We compare the performance of LPSA to that of a range of other sophisticated data analysis techniques. We show that LPSA allows to achieve excellent dynamics reconstruction at modest computational cost. Finally, we demonstrate the superiority of dynamics retrieval by LPSA compared to time binning and merging, which is, to date, the most commonly used method to extract dynamical information from TR-SFX data.

6.
Science ; 375(6583): 845-851, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35113649

RESUMEN

Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.

7.
J Struct Biol ; 214(1): 107828, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34971760

RESUMEN

The recently reported structure of the human CNGA1/CNGB1 CNG channel in the open state (Xue et al., 2021a) shows that one CNGA1 and one CNGB1 subunit do not open the central hydrophobic gate completely upon cGMP binding. This is different from what has been reported for CNGA homomeric channels (Xue et al., 2021b; Zheng et al., 2020). In seeking to understand how this difference is due to the presence of the CNGB1 subunit, we find that the deposited density map (Xue et al., 2021a) (EMDB 24465) contains an additional density not reported in the images of the original publication. This additional density fits well the structure of calmodulin (CaM), and it unambiguously connects the newly identified D-helix of CNGB1 to one of the CNGA1 helices (A1R) participating in the coiled-coil region. Interestingly, the CNGA1 subunit that engages in the interaction with this additional density is the one that, together with CNGB1, does not open completely the central gate. The sequence of the D-helix of CNGB1 contains a known CaM-binding site of exquisitely high affinity - named CaM2 (Weitz et al., 1998) -, and thus the presence of CaM in that region is not surprising. The mechanism through which CaM reduces currents across the membrane by acting on the native channel (Bauer, 1996; Hsu and Molday, 1993; Weitz et al., 1998) remains unclear. We suggest that the presence of CaM may explain the partially open central gate reported by Xue et al. (2021a). The structure of the open and closed states of the CNGA1/CNGB1 channel may be different with and without CaM present.


Asunto(s)
Calmodulina , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Sitios de Unión , Calmodulina/metabolismo , Microscopía por Crioelectrón , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Humanos , Células Fotorreceptoras Retinianas Bastones/metabolismo
8.
Nat Struct Mol Biol ; 29(1): 32-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34969975

RESUMEN

In rod photoreceptors of the retina, the cyclic nucleotide-gated (CNG) channel is composed of three CNGA and one CNGB subunits, and it closes in response to light activation to generate an electrical signal that is conveyed to the brain. Here we report the cryo-EM structure of the closed state of the native rod CNG channel isolated from bovine retina. The structure reveals differences between CNGA1 and CNGB1 subunits. Three CNGA1 subunits are tethered at their C terminus by a coiled-coil region. The C-helix in the cyclic nucleotide-binding domain of CNGB1 features a different orientation from that in the three CNGA1 subunits. The arginine residue R994 of CNGB1 reaches into the ionic pathway and blocks the pore, thus introducing an additional gate, which is different from the central hydrophobic gate known from homomeric CNGA channels. These results address the long-standing question of how CNGB1 subunits contribute to the function of CNG channels in visual and olfactory neurons.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Células Fotorreceptoras Retinianas Bastones/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Secuencia Conservada , Canales Catiónicos Regulados por Nucleótidos Cíclicos/ultraestructura , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Células Fotorreceptoras Retinianas Bastones/ultraestructura
9.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810259

RESUMEN

G protein-coupled receptors (GPCRs) are one of the most important drug-target classes in pharmaceutical industry. Their diversity in signaling, which can be modulated with drugs, permits the design of more effective and better-tolerated therapeutics. In this work, we have used rigid oligoproline backbones to generate bivalent ligands for the gastrin-releasing peptide receptor (GRPR) with a fixed distance between their recognition motifs. This allows the stabilization of GPCR dimers irrespective of their physiological occurrence and relevance, thus expanding the space for medicinal chemistry. Specifically, we observed that compounds presenting agonists or antagonists at 20- and 30-Å distance induce GRPR dimerization. Furthermore, we found that 1) compounds with two agonists at 20- and 30-Å distance that induce dimer formation show bias toward Gq efficacy, 2) dimers with 20- and 30-Å distance have different potencies toward ß-arrestin-1 and ß-arrestin-2, and 3) the divalent agonistic ligand with 10-Å distance specifically reduces Gq potency without affecting ß-arrestin recruitment, pointing toward an allosteric effect. In summary, we show that rigid oligoproline backbones represent a tool to develop ligands with biased GPCR signaling.


Asunto(s)
Prolina/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sitio Alostérico , Secuencias de Aminoácidos , Clonación Molecular , Dimerización , Células HEK293 , Humanos , Cinética , Ligandos , Péptidos/química , Ingeniería de Proteínas/métodos , Transducción de Señal , beta-Arrestinas/metabolismo
10.
J Chem Inf Model ; 61(11): 5692-5707, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34670076

RESUMEN

Dynamic hydrogen-bond networks provide proteins with structural plasticity required to translate signals such as ligand binding into a cellular response or to transport ions and larger solutes across membranes and, thus, are of central interest to understand protein reaction mechanisms. Here, we present C-Graphs, an efficient tool with graphical user interface that analyzes data sets of static protein structures or of independent numerical simulations to identify conserved, vs unique, hydrogen bonds and hydrogen-bond networks. For static structures, which may belong to the same protein or to proteins with different sequences, C-Graphs uses a clustering algorithm to identify sites of the hydrogen-bond network where waters are conserved among the structures. Using C-Graphs, we identify an internal protein-water hydrogen-bond network common to static structures of visual rhodopsins and adenosine A2A G protein-coupled receptors (GPCRs). Molecular dynamics simulations of a visual rhodopsin indicate that the conserved hydrogen-bond network from static structure can recruit dynamic hydrogen bonds and extend throughout most of the receptor. We release with this work the code for C-Graphs and its graphical user interface.


Asunto(s)
Rodopsina , Agua , Hidrógeno , Enlace de Hidrógeno , Simulación de Dinámica Molecular
11.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34326250

RESUMEN

G protein-coupled receptors (GPCRs) are important pharmaceutical targets for the treatment of a broad spectrum of diseases. Although there are structures of GPCRs in their active conformation with bound ligands and G proteins, the detailed molecular interplay between the receptors and their signaling partners remains challenging to decipher. To address this, we developed a high-sensitivity, high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method to interrogate the first stage of signal transduction. GPCR-G protein complex formation is detected as a proxy for the effect of ligands on GPCR conformation and on coupling selectivity. Over 70 ligand-GPCR-partner protein combinations were studied using as little as 1.25 pmol protein per sample. We determined the selectivity profile and binding affinities of three GPCRs (rhodopsin, beta-1 adrenergic receptor [ß1AR], and angiotensin II type 1 receptor) to engineered Gα-proteins (mGs, mGo, mGi, and mGq) and nanobody 80 (Nb80). We found that GPCRs in the absence of ligand can bind mGo, and that the role of the G protein C terminus in GPCR recognition is receptor-specific. We exemplified our quantification method using ß1AR and demonstrated the allosteric effect of Nb80 binding in assisting displacement of nadolol to isoprenaline. We also quantified complex formation with wild-type heterotrimeric Gαißγ and ß-arrestin-1 and showed that carvedilol induces an increase in coupling of ß-arrestin-1 and Gαißγ to ß1AR. A normalization strategy allows us to quantitatively measure the binding affinities of GPCRs to partner proteins. We anticipate that this methodology will find broad use in screening and characterization of GPCR-targeting drugs.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores Opioides/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Arrestina/genética , Arrestina/metabolismo , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ligandos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Opioides/química , Anticuerpos de Cadena Única , Pavos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
12.
Sci Adv ; 7(25)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34134983

RESUMEN

The human CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor (GPCR) that plays a major role in inflammation and is involved in cancer, HIV, and COVID-19. Despite its importance as a drug target, the molecular activation mechanism of CCR5, i.e., how chemokine agonists transduce the activation signal through the receptor, is yet unknown. Here, we report the cryo-EM structure of wild-type CCR5 in an active conformation bound to the chemokine super-agonist [6P4]CCL5 and the heterotrimeric Gi protein. The structure provides the rationale for the sequence-activity relation of agonist and antagonist chemokines. The N terminus of agonist chemokines pushes onto specific structural motifs at the bottom of the orthosteric pocket that activate the canonical GPCR microswitch network. This activation mechanism differs substantially from other CC chemokine receptors that bind chemokines with shorter N termini in a shallow binding mode involving unique sequence signatures and a specialized activation mechanism.


Asunto(s)
Receptores CCR5/química , Receptores CCR5/metabolismo , Quimiocina CCL5/química , Quimiocina CCL5/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Receptores CCR5/agonistas , Receptores CCR5/genética , Transducción de Señal , Relación Estructura-Actividad
13.
J Struct Biol ; 213(2): 107699, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33545352

RESUMEN

G-protein coupled receptors (GPCRs) are among the most versatile signal transducers in the cell. Once activated, GPCRs sample a large conformational space and couple to G-proteins to initiate distinct signaling pathways. The dynamical behavior of GPCR-G-protein complexes is difficult characterize structurally, and it might hinder obtaining routine high-resolution density maps in single-particle reconstructions. Here, we used variability analysis on the rhodopsin-Gi-Fab16 complex cryo-EM dataset, and the results provide insights into the dynamic nature of the receptor-complex interaction. We compare the outcome of this analysis with recent results obtained on the cannabinoid-Gi- and secretin-Gs-receptor complexes. Despite differences related to the biochemical compositions of the three samples, a set of consensus movements emerges. We anticipate that systematic variability analysis on GPCR-G-protein complexes may provide useful information not only at the biological level, but also for improving the preparation of more stable samples for cryo-EM single-particle analysis.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Complejos Multiproteicos/química , Receptores Acoplados a Proteínas G/química , Bases de Datos de Proteínas , Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Imagenología Tridimensional , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Complejos Multiproteicos/metabolismo , Conformación Proteica en Hélice alfa , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/química , Rodopsina/metabolismo
14.
Molecules ; 25(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348734

RESUMEN

In this work, we examine methyl nuclear magnetic resonance (NMR) spectra of the methionine ε-[13CH3] labelled thermostabilized ß1 adrenergic receptor from turkey in association with a variety of different effectors, including mini-Gs and nanobody 60 (Nb60), which have not been previously studied in complex with ß1 adrenergic receptor (ß1AR) by NMR. Complexes with pindolol and Nb60 induce highly similar inactive states of the receptor, closely resembling the resting state conformational ensemble. We show that, upon binding of mini-Gs or nanobody 80 (Nb80), large allosteric changes throughout the receptor take place. The conformation of tß1AR stabilized by the native-like mini-Gs protein is highly similar to the conformation induced by the currently used surrogate Nb80. Interestingly, in both cases residual dynamics are present, which were not observed in the resting states. Finally, we reproduce a pharmaceutically relevant situation, where an antagonist abolishes the interaction of the receptor with the mini-G protein in a competitive manner, validating the functional integrity of our preparation. The presented system is therefore well suited for reproducing the individual steps of the activation cycle of a G protein-coupled receptor (GPCR) in vitro and serves as a basis for functional and pharmacological characterizations of more native-like systems in the future.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Pindolol/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Anticuerpos de Cadena Única/metabolismo , Anticuerpos de Dominio Único/inmunología , Sitios de Unión , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Turquía
15.
Phys Chem Chem Phys ; 22(41): 24086-24096, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33079118

RESUMEN

G protein-coupled receptors (GPCRs) are a large and ubiquitous family of membrane receptors of great pharmacological interest. Cell-based assays are the primary tool for assessing GPCR interactions and activation but their design and intrinsic complexity limit their application. Biosensor-based assays that directly and specifically report GPCR-protein binding (e.g. arrestin or G protein) could provide a good alternative. We present an approach based on the stable immobilization of different arrestin-3 proteins (wild type, and two mutants, mutant X (arrestin-3 I386A) and mutant Y (arrestin-3 R393E)) via histidine tags on NTA(Ni2+)-coated sensors in a defined orientation. Using biolayer interferometry (BLI), surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D), we were able to follow the interaction between the different arrestin-3 proteins and a representative GPCR, jumping spider rhodopsin-1 (JSR1), in a label-free manner in real-time. The interactions were quantified as binding affinity, association and dissociation rate constants. The combination of surface-based biosensing methods indicated that JSR1 showed the strongest binding to arrestin mutant Y. Taken together, this work introduces direct label-free, biosensor-based screening approaches that can be easily adapted for testing interactions of proteins and other compounds with different GPCRs.


Asunto(s)
Proteínas Inmovilizadas/metabolismo , Rodopsina/metabolismo , Arrestina beta 2/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Técnicas Biosensibles , Proteínas Inmovilizadas/genética , Membrana Dobles de Lípidos/química , Mutación , Fosfatidilcolinas/química , Unión Proteica , Tecnicas de Microbalanza del Cristal de Cuarzo , Arañas/química , Resonancia por Plasmón de Superficie , Arrestina beta 2/genética
16.
J Struct Biol ; 212(2): 107617, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32919067

RESUMEN

Corona virus spike protein S is a large homo-trimeric protein anchored in the membrane of the virion particle. Protein S binds to angiotensin-converting-enzyme 2, ACE2, of the host cell, followed by proteolysis of the spike protein, drastic protein conformational change with exposure of the fusion peptide of the virus, and entry of the virion into the host cell. The structural elements that govern conformational plasticity of the spike protein are largely unknown. Here, we present a methodology that relies upon graph and centrality analyses, augmented by bioinformatics, to identify and characterize large H-bond clusters in protein structures. We apply this methodology to protein S ectodomain and find that, in the closed conformation, the three protomers of protein S bring the same contribution to an extensive central network of H-bonds, and contribute symmetrically to a relatively large H-bond cluster at the receptor binding domain, and to a cluster near a protease cleavage site. Markedly different H-bonding at these three clusters in open and pre-fusion conformations suggest dynamic H-bond clusters could facilitate structural plasticity and selection of a protein S protomer for binding to the host receptor, and proteolytic cleavage. From analyses of spike protein sequences we identify patches of histidine and carboxylate groups that could be involved in transient proton binding.


Asunto(s)
Betacoronavirus/química , Gráficos por Computador , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Mapeo de Interacción de Proteínas/métodos , Glicoproteína de la Espiga del Coronavirus , Algoritmos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/fisiología , COVID-19 , Biología Computacional/métodos , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Pandemias , Peptidil-Dipeptidasa A/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
17.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668755

RESUMEN

G protein-coupled receptors (GPCRs) are cellular master regulators that translate extracellular stimuli such as light, small molecules or peptides into a cellular response. Upon ligand binding, they bind intracellular proteins such as G proteins or arrestins, modulating intracellular signaling cascades. Here, we use a protein-fragment complementation approach based on nanoluciferase (split luciferase assay) to assess interaction of all four known human arrestins with four different GPCRs (two class A and two class B receptors) in live cells. Besides directly tagging the 11S split-luciferase subunit to the receptor, we also could demonstrate that membrane localization of the 11S subunit with a CAAX-tag allowed us to probe arrestin recruitment by endogenously expressed GPCRs. Varying the expression levels of our reporter constructs changed the dynamic behavior of our assay, which we addressed with an advanced baculovirus-based multigene expression system. Our detection assay allowed us to probe the relevance of each of the two arrestin binding sites in the different GPCRs for arrestin binding. We observed remarkable differences between the roles of each arresting binding site in the tested GPCRs and propose that the distinct advantages of our system for probing receptor interaction with effector proteins will help elucidate the molecular basis of GPCR signaling efficacy and specificity in different cell types.


Asunto(s)
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Dominio Catalítico , Dosificación de Gen , Genes Reporteros , Células HEK293 , Humanos , Cinética , Luciferasas/genética , Nucleopoliedrovirus/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de Vasopresinas/metabolismo , Proteínas Recombinantes/metabolismo , Transducción Genética , Arrestina beta 2/metabolismo
18.
Nature ; 583(7815): 314-318, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32499654

RESUMEN

Light-driven sodium pumps actively transport small cations across cellular membranes1. These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved2,3, it is unclear how structural alterations over time allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser4, we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion binds transiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


Asunto(s)
Flavobacteriaceae/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efectos de la radiación , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/efectos de la radiación , Sitios de Unión , Cristalografía , Electrones , Transporte Iónico , Isomerismo , Rayos Láser , Protones , Teoría Cuántica , Retinaldehído/química , Retinaldehído/metabolismo , Bases de Schiff/química , Sodio/metabolismo , Análisis Espectral , Electricidad Estática , Factores de Tiempo
19.
Proc Natl Acad Sci U S A ; 116(29): 14547-14556, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31249143

RESUMEN

Light-sensitive G protein-coupled receptors (GPCRs)-rhodopsins-absorb photons to isomerize their covalently bound retinal, triggering conformational changes that result in downstream signaling cascades. Monostable rhodopsins release retinal upon isomerization as opposed to the retinal in bistable rhodopsins that "reisomerize" upon absorption of a second photon. Understanding the mechanistic differences between these light-sensitive GPCRs has been hindered by the scarcity of recombinant models of the latter. Here, we reveal the high-resolution crystal structure of a recombinant bistable rhodopsin, jumping spider rhodopsin-1, bound to the inverse agonist 9-cis retinal. We observe a water-mediated network around the ligand hinting toward the basis of their bistable nature. In contrast to bovine rhodopsin (monostable), the transmembrane bundle of jumping spider rhodopsin-1 as well that of the bistable squid rhodopsin adopts a more "activation-ready" conformation often observed in other nonphotosensitive class A GPCRs. These similarities suggest the role of jumping spider rhodopsin-1 as a potential model system in the study of the structure-function relationship of both photosensitive and nonphotosensitive class A GPCRs.


Asunto(s)
Proteínas de Artrópodos/ultraestructura , Rodopsina/ultraestructura , Transducción de Señal/efectos de la radiación , Arañas , Animales , Proteínas de Artrópodos/aislamiento & purificación , Proteínas de Artrópodos/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Luz , Simulación de Dinámica Molecular , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Rodopsina/aislamiento & purificación , Rodopsina/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
20.
Commun Biol ; 2: 180, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098413

RESUMEN

Animals sense light using photosensitive proteins-rhodopsins-containing a chromophore-retinal-that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue-counterion-for stabilization. Little is known about how the most common counterion among varied rhodopsins, Glu181, functions. Here, we demonstrate that in a spider visual rhodopsin, orthologue of mammal melanopsins relevant to circadian rhythms, the Glu181 counterion functions likely by forming a hydrogen-bonding network, where Ser186 is a key mediator of the Glu181-SB interaction. We also suggest that upon light activation, the Glu181-SB interaction rearranges while Ser186 changes its contribution. This is in contrast to how the counterion of vertebrate visual rhodopsins, Glu113, functions, which forms a salt bridge with the SB. Our results shed light on the molecular mechanisms of visible light-sensitivity relevant to invertebrate vision and vertebrate non-visual photoreception.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Artrópodos/efectos de la radiación , Rodopsina/química , Rodopsina/efectos de la radiación , Sustitución de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Enlace de Hidrógeno , Luz , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Procesos Fotoquímicos , Estabilidad Proteica , Rodopsina/genética , Bases de Schiff/química , Bases de Schiff/efectos de la radiación , Arañas/química , Arañas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...