Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Blood Adv ; 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008716

RESUMEN

Central nervous system (CNS) involvement remains a clinical hurdle in treating childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The disease mechanisms of CNS leukemia are primarily investigated using 2D cell culture and mouse models. Given the variations in cellular identity and architecture between the human and murine CNS, it becomes imperative to seek complementary models to study CNS leukemia. Here, we present a first-of-its-kind 3D co-culture model combining human brain organoids and BCP-ALL-cells. We noticed significantly higher engraftment of BCP-ALL cell lines and patient-derived xenograft (PDX) cells in cerebral organoids as compared to non-ALL-cells. To validate translatability between organoid co-culture and in vivo murine models, we confirmed that targeting CNS leukemia relevant pathways like CD79a/Igα or CXCR4-SDF1 reduced the invasion of BCP-ALL-cells into organoids. RNA sequencing and functional validations of organoid-invading leukemia cells compared to the non-invaded fraction revealed significant upregulation of AP-1 transcription factor-complex members in organoid-invading cells. Moreover, we detected a significant enrichment of AP-1 pathway genes in ALL-PDX-cells recovered from the CNS compared to spleen blasts of mice transplanted with TCF3::PBX1+ PDX-cells, substantiating the role of AP-1 signaling in CNS disease. Accordingly, we found significantly higher levels of the AP-1-gene JUN in patients initially diagnosed as CNS-positive compared to CNS-negative cases as well as CNS-relapse vs non-CNS-relapse cases in a cohort of 100 BCP-ALL-patients. Our results suggest CNS-organoids as a novel model to investigate CNS-involvement and identify the AP-1 pathway as a critical driver of CNS-disease in BCP-ALL.

2.
Hemasphere ; 8(2): e48, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435424

RESUMEN

CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.

3.
Blood ; 143(26): 2735-2748, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38518105

RESUMEN

ABSTRACT: Acute lymphoblastic leukemia (ALL) arises from the uncontrolled proliferation of B-cell precursors (BCP-ALL) or T cells (T-ALL). Current treatment protocols obtain high cure rates in children but are based on toxic polychemotherapy. Novel therapies are urgently needed, especially in relapsed/refractory (R/R) disease, high-risk (HR) leukemias and T-ALL, in which immunotherapy approaches remain scarce. Although the interleukin-7 receptor (IL-7R) plays a pivotal role in ALL development, no IL-7R-targeting immunotherapy has yet reached clinical application in ALL. The IL-7Rα chain (CD127)-targeting IgG4 antibody lusvertikimab (LUSV; formerly OSE-127) is a full antagonist of the IL-7R pathway, showing a good safety profile in healthy volunteers. Here, we show that ∼85% of ALL cases express surface CD127. We demonstrate significant in vivo efficacy of LUSV immunotherapy in a heterogeneous cohort of BCP- and T-ALL patient-derived xenografts (PDX) in minimal residual disease (MRD) and overt leukemia models, including R/R and HR leukemias. Importantly, LUSV was particularly effective when combined with polychemotherapy in a phase 2-like PDX study with CD127high samples leading to MRD-negativity in >50% of mice treated with combination therapy. Mechanistically, LUSV targeted ALL cells via a dual mode of action comprising direct IL-7R antagonistic activity and induction of macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). LUSV-mediated in vitro ADCP levels significantly correlated with CD127 expression levels and the reduction of leukemia burden upon treatment of PDX animals in vivo. Altogether, through its dual mode of action and good safety profile, LUSV may represent a novel immunotherapy option for any CD127+ ALL, particularly in combination with standard-of-care polychemotherapy.


Asunto(s)
Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Ratones , Receptores de Interleucina-7/antagonistas & inhibidores , Ratones SCID , Fagocitosis/efectos de los fármacos , Subunidad alfa del Receptor de Interleucina-7 , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Femenino , Ratones Endogámicos NOD , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico
4.
Front Immunol ; 14: 1240275, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781391

RESUMEN

Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Macrófagos , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Inmunoglobulinas/metabolismo , Antígenos CD/metabolismo
7.
Neuro Oncol ; 25(12): 2273-2286, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37379234

RESUMEN

BACKGROUND: The prognosis for Li-Fraumeni syndrome (LFS) patients with medulloblastoma (MB) is poor. Comprehensive clinical data for this patient group is lacking, challenging the development of novel therapeutic strategies. Here, we present clinical and molecular data on a retrospective cohort of pediatric LFS MB patients. METHODS: In this multinational, multicenter retrospective cohort study, LFS patients under 21 years with MB and class 5 or class 4 constitutional TP53 variants were included. TP53 mutation status, methylation subgroup, treatment, progression free- (PFS) and overall survival (OS), recurrence patterns, and incidence of subsequent neoplasms were evaluated. RESULTS: The study evaluated 47 LFS individuals diagnosed with MB, mainly classified as DNA methylation subgroup "SHH_3" (86%). The majority (74%) of constitutional TP53 variants represented missense variants. The 2- and 5-year (y-) PFS were 36% and 20%, and 2- and 5y-OS were 53% and 23%, respectively. Patients who received postoperative radiotherapy (RT) (2y-PFS: 44%, 2y-OS: 60%) or chemotherapy before RT (2y-PFS: 32%, 2y-OS: 48%) had significantly better clinical outcome then patients who were not treated with RT (2y-PFS: 0%, 2y-OS: 25%). Patients treated according to protocols including high-intensity chemotherapy and patients who received only maintenance-type chemotherapy showed similar outcomes (2y-PFS: 42% and 35%, 2y-OS: 68% and 53%, respectively). CONCLUSIONS: LFS MB patients have a dismal prognosis. In the presented cohort use of RT significantly increased survival rates, whereas chemotherapy intensity did not influence their clinical outcome. Prospective collection of clinical data and development of novel treatments are required to improve the outcome of LFS MB patients.


Asunto(s)
Neoplasias Cerebelosas , Síndrome de Li-Fraumeni , Meduloblastoma , Niño , Humanos , Síndrome de Li-Fraumeni/complicaciones , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/terapia , Meduloblastoma/terapia , Meduloblastoma/tratamiento farmacológico , Estudios Retrospectivos , Estudios Prospectivos , Neoplasias Cerebelosas/terapia , Neoplasias Cerebelosas/tratamiento farmacológico , Mutación de Línea Germinal , Proteína p53 Supresora de Tumor/genética
8.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36898735

RESUMEN

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for a number of hemato-oncological disorders. In fact, allo-HSCT is considered as one of the most successful immunotherapies as its clinical efficacy is based on the donor T-cells' capacity to control residual disease. This process is known as the graft-versus-leukemia (GvL) reaction. However, alloreactive T-cells can also recognize the host as foreign and trigger a systemic potentially life-threatening inflammatory disorder termed graft-versus-host disease (GvHD). A better understanding of the underlying mechanisms that lead to GvHD or disease relapse could help us to improve efficacy and safety of allo-HSCT. In recent years, extracellular vesicles (EVs) have emerged as critical components of intercellular crosstalk. Cancer-associated EVs that express the immune checkpoint molecule programmed death-ligand 1 (PD-L1) can suppress T-cell responses and thus contribute to immune escape. At the same time, it has been observed that inflammation triggers PD-L1 expression as part of a negative feedback network.Here, we investigated whether circulating EVs following allo-HSCT express PD-L1 and tested their efficacy to suppress the ability of (autologous) T-cells to effectively target AML blasts. Finally, we assessed the link between PD-L1 levels on EVs to (T-)cell reconstitution, GvHD, and disease relapse.We were able to detect PD-L1+ EVs that reached a peak PD-L1 expression at 6 weeks post allo-HSCT. Development of acute GvHD was linked to the emergence of PD-L1high EVs following allo-HSCT. Moreover, PD-L1 levels correlated positively with GvHD grade and declined (only) on successful therapeutic intervention. T-cell-inhibitory capacity was higher in PD-L1high EVs as compared with their PD-L1low counterparts and could be antagonized using PD-L1/PD-1 blocking antibodies. Abundance of T-cell-suppressive PD-L1high EVs appears to also impact GvL efficacy as patients were at higher risk for relapse. Finally, patients of PD-L1high cohort displayed a reduced overall survival.Taken together, we show that PD-L1-expressing EVs are present following allo-HSCT. PD-L1 levels on EVs correlate with their ability to suppress T-cells and the occurrence of GvHD. The latter observation may indicate a negative feedback mechanism to control inflammatory (GvHD) activity. This intrinsic immunosuppression could subsequently promote disease relapse.


Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Leucemia , Humanos , Linfocitos T , Antígeno B7-H1/metabolismo , Trasplante Homólogo/efectos adversos , Leucemia/etiología , Vesículas Extracelulares/metabolismo
10.
Leukemia ; 37(1): 134-142, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36411356

RESUMEN

Acute myeloid leukemia (AML) is characterized by complex molecular alterations and driver mutations. Elderly patients show increased frequencies of IDH mutations with high chemoresistance and relapse rates despite recent therapeutic advances. Besides being associated with global promoter hypermethylation, IDH1 mutation facilitated changes in 3D DNA-conformation by CTCF-anchor methylation and upregulated oncogene expression in glioma, correlating with poor prognosis. Here, we investigated the role of IDH1 p.R132H mutation in altering 3D DNA-architecture and subsequent oncogene activation in AML. Using public RNA-Seq data, we identified upregulation of tyrosine kinase PDGFRA in IDH1-mutant patients, correlating with poor prognosis. DNA methylation analysis identified CpG hypermethylation within a CTCF-anchor upstream of PDGFRA in IDH1-mutant patients. Increased PDGFRA expression, PDGFRA-CTCF methylation and decreased CTCF binding were confirmed in AML CRISPR cells with heterozygous IDH1 p.R132H mutation and upon exogenous 2-HG treatment. IDH1-mutant cells showed higher sensitivity to tyrosine kinase inhibitor dasatinib, which was supported by reduced blast count in a patient with refractory IDH1-mutant AML after dasatinib treatment. Our data illustrate that IDH1 p.R132H mutation leads to CTCF hypermethylation, disrupting DNA-looping and insulation of PDGFRA, resulting in PDGFRA upregulation in IDH1-mutant AML. Treatment with dasatinib may offer a novel treatment strategy for IDH1-mutant AML.


Asunto(s)
Isocitrato Deshidrogenasa , Leucemia Mieloide Aguda , Humanos , Anciano , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Dasatinib , Mutación , Oncogenes , Leucemia Mieloide Aguda/genética , Carcinogénesis/genética
11.
Front Immunol ; 13: 929339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389667

RESUMEN

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Asunto(s)
Antígeno CD47 , Leucemia Linfocítica Crónica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Rituximab/farmacología , Rituximab/uso terapéutico , Rituximab/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Línea Celular Tumoral , Fagocitosis , Macrófagos , Anticuerpos/metabolismo , Antígenos CD/metabolismo
12.
Front Immunol ; 13: 957874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119088

RESUMEN

Targeting CD19 represents a promising strategy for the therapy of B-cell malignancies. Although non-engineered CD19 antibodies are poorly effective in mediating complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP), these effector functions can be enhanced by Fc-engineering. Here, we engineered a CD19 antibody with the aim to improve effector cell-mediated killing and CDC activity by exchanging selected amino acid residues in the Fc domain. Based on the clinically approved Fc-optimized antibody tafasitamab, which triggers enhanced ADCC and ADCP due to two amino acid exchanges in the Fc domain (S239D/I332E), we additionally added the E345K amino acid exchange to favor antibody hexamerization on the target cell surface resulting in improved CDC. The dual engineered CD19-DEK antibody bound CD19 and Fcγ receptors with similar characteristics as the parental CD19-DE antibody. Both antibodies were similarly efficient in mediating ADCC and ADCP but only the dual optimized antibody was able to trigger complement deposition on target cells and effective CDC. Our data provide evidence that from a technical perspective selected Fc-enhancing mutations can be combined (S239D/I332E and E345K) allowing the enhancement of ADCC, ADCP and CDC with isolated effector populations. Interestingly, under more physiological conditions when the complement system and FcR-positive effector cells are available as effector source, strong complement deposition negatively impacts FcR engagement. Both effector functions were simultaneously active only at selected antibody concentrations. Dual Fc-optimized antibodies may represent a strategy to further improve CD19-directed cancer immunotherapy. In general, our results can help in guiding optimal antibody engineering strategies to optimize antibodies' effector functions.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Receptores de IgG , Aminoácidos , Antígenos CD19 , Proteínas del Sistema Complemento , Fragmentos Fc de Inmunoglobulinas , Receptores de IgG/genética , Receptores de IgG/metabolismo
13.
Front Immunol ; 13: 949140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052078

RESUMEN

Antibody-based immunotherapy is increasingly employed to treat acute lymphoblastic leukemia (ALL) patients. Many T-ALL cells express CD38 on their surface, which can be targeted by the CD38 antibody daratumumab (DARA), approved for the treatment of multiple myeloma. Tumor cell killing by myeloid cells is relevant for the efficacy of many therapeutic antibodies and can be more efficacious with human IgA than with IgG antibodies. This is demonstrated here by investigating antibody-dependent cellular phagocytosis (ADCP) by macrophages and antibody-dependent cell-mediated cytotoxicity (ADCC) by polymorphonuclear (PMN) cells using DARA (human IgG1) and an IgA2 isotype switch variant (DARA-IgA2) against T-ALL cell lines and primary patient-derived tumor cells. ADCP and ADCC are negatively regulated by interactions between CD47 on tumor cells and signal regulatory protein alpha (SIRPα) on effector cells. In order to investigate the impact of this myeloid checkpoint on T-ALL cell killing, CD47 and glutaminyl-peptide cyclotransferase like (QPCTL) knock-out T-ALL cells were employed. QPTCL is an enzymatic posttranslational modifier of CD47 activity, which can be targeted by small molecule inhibitors. Additionally, we used an IgG2σ variant of the CD47 blocking antibody magrolimab, which is in advanced clinical development. Moreover, treatment of T-ALL cells with all-trans retinoic acid (ATRA) increased CD38 expression leading to further enhanced ADCP and ADCC, particularly when DARA-IgA2 was applied. These studies demonstrate that myeloid checkpoint blockade in combination with IgA2 variants of CD38 antibodies deserves further evaluation for T-ALL immunotherapy.


Asunto(s)
Antígeno CD47 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Humanos , Inmunoglobulina A
15.
Endocr Relat Cancer ; 29(9): 545-555, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35900840

RESUMEN

Adjuvant treatment with mitotane and chemotherapy is recommended for paediatric advanced and metastatic adrenocortical carcinoma (ACC). Yet, questions on the indication, dosage, and length of therapy are unanswered. Data from the German Paediatric Oncology Haematology-Malignant Endocrine Tumour studies were analysed retrospectively for patients receiving mitotane during first- and/or second-line therapy. Forty-three patients were identified (median age: 7.5 years (range: 0.2-17.8); 29 female) with median follow-up of 2.2 years (range: 0.04-12.71). Three-year overall (OS) and progression-free survival (PFS) were 44.9% and 28.5%, respectively. Eleven of 43 patients received mitotane as neoadjuvant treatment, and 4/11 tumours reached partial remission (PR). Twenty-seven of 43 patients received mitotane combined with chemotherapy in an adjuvant setting resulting in PR of measurable target lesions in 5/13 patients. Metastatic disease (hazard ratio (HR): 3.2; 95% CI: 1.2-18.6; P = 0.018), duration of mitotane treatment <9 months (HR: 5.6; 95% CI: 1.9-16.9; P = 0.002), and not achieving drug target range (TR) (HR: 28.5; 95% CI: 5.4-150.3; P < 0.001) significantly impacted as negative prognostic factors upon PFS and OS (metastatic disease: HR: 4.9; 95% CI: 1.6-15.5; P = 0.006; duration of mitotane treatment: HR: 7.0: 95% CI 1.9-26.0; P = 0.004; TR not reached: HR: 13.5; 95% CI 3.6-50.3; P < 0.001). Cox regression determined the risk of event decreasing by 10.4% for each month of mitotane treatment (P = 0.015). Re-treatment with mitotane after first-line treatment proved ineffective. The duration of mitotane treatment and reaching mitotane TR significantly impacted survival. Improving the efficacy of mitotane, including appropriate indications, needs to be evaluated in prospective randomized trials.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Antineoplásicos Hormonales/uso terapéutico , Niño , Femenino , Humanos , Mitotano/uso terapéutico , Estudios Prospectivos , Estudios Retrospectivos
16.
Blood Adv ; 6(16): 4847-4858, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35820018

RESUMEN

Immunotherapy has evolved as a powerful tool for the treatment of B-cell malignancies, and patient outcomes have improved by combining therapeutic antibodies with conventional chemotherapy. Overexpression of antiapoptotic B-cell lymphoma 2 (Bcl-2) is associated with a poor prognosis, and increased levels have been described in patients with "double-hit" diffuse large B-cell lymphoma, a subgroup of Burkitt's lymphoma, and patients with pediatric acute lymphoblastic leukemia harboring a t(17;19) translocation. Here, we show that the addition of venetoclax (VEN), a specific Bcl-2 inhibitor, potently enhanced the efficacy of the therapeutic anti-CD20 antibody rituximab, anti-CD38 daratumumab, and anti-CD19-DE, a proprietary version of tafasitamab. This was because of an increase in antibody-dependent cellular phagocytosis by macrophages as shown in vitro and in vivo in cell lines and patient-derived xenograft models. Mechanistically, double-hit lymphoma cells subjected to VEN triggered phagocytosis in an apoptosis-independent manner. Our study identifies the combination of VEN and therapeutic antibodies as a promising novel strategy for the treatment of B-cell malignancies.


Asunto(s)
Citofagocitosis , Linfoma de Células B Grandes Difuso , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Niño , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Sulfonamidas
17.
Blood ; 140(17): 1875-1890, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35839448

RESUMEN

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.


Asunto(s)
Proteína de la Leucemia Mieloide-Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Epigénesis Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genes Reguladores , Cromatina
18.
Blood ; 140(1): 45-57, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452517

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common malignant disease affecting children. Although therapeutic strategies have improved, T-cell acute lymphoblastic leukemia (T-ALL) relapse is associated with chemoresistance and a poor prognosis. One strategy to overcome this obstacle is the application of monoclonal antibodies. Here, we show that leukemic cells from patients with T-ALL express surface CD38 and CD47, both attractive targets for antibody therapy. We therefore investigated the commercially available CD38 antibody daratumumab (Dara) in combination with a proprietary modified CD47 antibody (Hu5F9-IgG2σ) in vitro and in vivo. Compared with single treatments, this combination significantly increased in vitro antibody-dependent cellular phagocytosis in T-ALL cell lines as well as in random de novo and relapsed/refractory T-ALL patient-derived xenograft (PDX) samples. Similarly, enhanced antibody-dependent cellular phagocytosis was observed when combining Dara with pharmacologic inhibition of CD47 interactions using a glutaminyl cyclase inhibitor. Phase 2-like preclinical in vivo trials using T-ALL PDX samples in experimental minimal residual disease-like (MRD-like) and overt leukemia models revealed a high antileukemic efficacy of CD47 blockade alone. However, T-ALL xenograft mice subjected to chemotherapy first (postchemotherapy MRD) and subsequently cotreated with Dara and Hu5F9-IgG2σ displayed significantly reduced bone marrow infiltration compared with single treatments. In relapsed and highly refractory T-ALL PDX combined treatment with Dara and Hu5F9-IgG2σ was required to substantially prolong survival compared with single treatments. These findings suggest that combining CD47 blockade with Dara is a promising therapy for T-ALL, especially for relapsed/refractory disease harboring a dismal prognosis in patients.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antígeno CD47 , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico
19.
Blood ; 139(22): 3303-3313, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35313334

RESUMEN

Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) outcome has improved in the last decades, but leukemic relapses are still one of the main problems of this disease. Bone morphogenetic protein 4 (BMP4) was investigated as a new candidate biomarker with potential prognostic relevance, and its pathogenic role was assessed in the development of disease. A retrospective study was performed with 115 pediatric patients with BCP-ALL, and BMP4 expression was analyzed by quantitative reverse transcription polymerase chain reaction in leukemic blasts at the time of diagnosis. BMP4 mRNA expression levels in the third (upper) quartile were associated with a higher cumulative incidence of relapse as well as a worse 5-year event-free survival and central nervous system (CNS) involvement. Importantly, this association was also evident among children classified as having a nonhigh risk of relapse. A validation cohort of 236 patients with BCP-ALL supported these data. Furthermore, high BMP4 expression promoted engraftment and rapid disease progression in an NSG mouse xenograft model with CNS involvement. Pharmacological blockade of the canonical BMP signaling pathway significantly decreased CNS infiltration and consistently resulted in amelioration of clinical parameters, including neurological score. Mechanistically, BMP4 favored chemoresistance, enhanced adhesion and migration through brain vascular endothelial cells, and promoted a proinflammatory microenvironment and CNS angiogenesis. These data provide evidence that BMP4 expression levels in leukemic cells could be a useful biomarker to identify children with poor outcomes in the low-/intermediate-risk groups of BCP-ALL and that BMP4 could be a new therapeutic target to blockade leukemic CNS disease.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Proteína Morfogenética Ósea 4/genética , Niño , Células Endoteliales/metabolismo , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Recurrencia , Estudios Retrospectivos , Microambiente Tumoral
20.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36612221

RESUMEN

Background: Adrenocortical tumors (ACTs) encompassing the adrenocortical adenoma (ACA), carcinoma (ACC), and tumors of undetermined malignant potential (ACx) are rare endocrine neoplasms with a poor prognosis. We report on pediatric ACT patients registered with the Malignant Endocrine Tumor studies and explore the EXPeRT recommendations for management. Patients: Data from the ACT patients (<18 years) were analyzed. For the risk prediction, the patients were retrospectively assigned to the COG stages and the five-item score. Results: By December 2021, 161 patients with ACT (ACA n = 51, ACx n = 19, and ACC n = 91) had been reported (the median age at the diagnosis was 4.3 years with a range of 0.1−17.8), with lymph node and distant metastases in 10.7% and 18.9% of the patients with ACC/ACx. The mean follow-up was 4.5 years (with a range of 0−16.7). The three-year overall (OS) and event-free survival (EFS) rates were 65.5% and 50.6%. In the univariate analyses, the OS was impaired for patients aged ≥ 4 years (p = 0.001) with the initial biopsy (p = 0.016), tumor spillage (p = 0.028), incomplete tumor resection (p < 0.001), unfavorable histology (p = 0.047), and COG stages III/IV (p = 0.002). Multivariate analysis revealed COG stages III/IV and an unfavorable five-item score as independent negative prognostic factors for the EFS and OS. Conclusions: Age defines the clinical presentation and prognosis in pediatric ACTs. The outcome is best predicted by the COG stage and five-item score.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...