Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 583, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834686

RESUMEN

Mg/Ca is an independent proxy in paleoceanography to reconstruct past seawater temperature. Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry (fs-LA-ICP-MS) was employed to determine the Mg/Ca composition of tests (shells) of the planktic foraminifer species Globigerinoides ruber albus (white chromotype) and G. ruber ruber (red/pink chromotype) sampled alive from the temperate to subtropical eastern North Atlantic with the research sailing yacht Eugen Seibold. Mg/Ca data are compared to (i) the measured in-situ temperature of ambient seawater, (ii) average mixed layer temperature, and (iii) sea surface temperature (SST). The pooled mean chamber Mg/Ca from each plankton tow site exhibits a positive relationship with SST. Two chamber-specific calibrations are derived, which are consistent with previous calibration equations for comparable paleo-archives. The results confirm fs-LA-ICP-MS as reliable method for determining Mg/Ca in G. ruber, and both the penultimate and antepenultimate chambers of adult specimens may provide comprehensible Mg/Ca temperatures of the surface ocean.


Asunto(s)
Calcio , Foraminíferos , Magnesio , Espectrometría de Masas , Agua de Mar , Magnesio/análisis , Agua de Mar/análisis , Calcio/análisis , Espectrometría de Masas/métodos , Calibración , Temperatura
2.
Science ; 383(6684): 727-731, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38359106

RESUMEN

The global ocean's oxygen inventory is declining in response to global warming, but the future of the low-oxygen tropics is uncertain. We report new evidence for tropical oxygenation during the Paleocene-Eocene Thermal Maximum (PETM), a warming event that serves as a geologic analog to anthropogenic warming. Foraminifera-bound nitrogen isotopes indicate that the tropical North Pacific oxygen-deficient zone contracted during the PETM. A concomitant increase in foraminifera size implies that oxygen availability rose in the shallow subsurface throughout the tropical North Pacific. These changes are consistent with ocean model simulations of warming, in which a decline in biological productivity allows tropical subsurface oxygen to rise even as global ocean oxygen declines. The tropical oxygen increase may have helped avoid a mass extinction during the PETM.

3.
Sci Data ; 10(1): 354, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270659

RESUMEN

Planktonic Foraminifera are unique paleo-environmental indicators through their excellent fossil record in ocean sediments. Their distribution and diversity are affected by different environmental factors including anthropogenically forced ocean and climate change. Until now, historical changes in their distribution have not been fully assessed at the global scale. Here we present the FORCIS (Foraminifera Response to Climatic Stress) database on foraminiferal species diversity and distribution in the global ocean from 1910 until 2018 including published and unpublished data. The FORCIS database includes data collected using plankton tows, continuous plankton recorder, sediment traps and plankton pump, and contains ~22,000, ~157,000, ~9,000, ~400 subsamples, respectively (one single plankton aliquot collected within a depth range, time interval, size fraction range, at a single location) from each category. Our database provides a perspective of the distribution patterns of planktonic Foraminifera in the global ocean on large spatial (regional to basin scale, and at the vertical scale), and temporal (seasonal to interdecadal) scales over the past century.


Asunto(s)
Foraminíferos , Censos , Cambio Climático , Océanos y Mares , Plancton
4.
Nature ; 609(7925): 77-82, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045236

RESUMEN

Dissolved oxygen (O2) is essential for most ocean ecosystems, fuelling organisms' respiration and facilitating the cycling of carbon and nutrients. Oxygen measurements have been interpreted to indicate that the ocean's oxygen-deficient zones (ODZs) are expanding under global warming1,2. However, models provide an unclear picture of future ODZ change in both the near term and the long term3-6. The paleoclimate record can help explore the possible range of ODZ changes in warmer-than-modern periods. Here we use foraminifera-bound nitrogen (N) isotopes to show that water-column denitrification in the eastern tropical North Pacific was greatly reduced during the Middle Miocene Climatic Optimum (MMCO) and the Early Eocene Climatic Optimum (EECO). Because denitrification is restricted to oxygen-poor waters, our results indicate that, in these two Cenozoic periods of sustained warmth, ODZs were contracted, not expanded. ODZ contraction may have arisen from a decrease in upwelling-fuelled biological productivity in the tropical Pacific, which would have reduced oxygen demand in the subsurface. Alternatively, invigoration of deep-water ventilation by the Southern Ocean may have weakened the ocean's 'biological carbon pump', which would have increased deep-ocean oxygen. The mechanism at play would have determined whether the ODZ contractions occurred in step with the warming or took centuries or millennia to develop. Thus, although our results from the Cenozoic do not necessarily apply to the near-term future, they might imply that global warming may eventually cause ODZ contraction.


Asunto(s)
Ecosistema , Calor , Oxígeno , Agua de Mar , Regiones Antárticas , Carbono/metabolismo , Desnitrificación , Foraminíferos/metabolismo , Calentamiento Global , Historia Antigua , Isótopos de Nitrógeno , Oxígeno/análisis , Oxígeno/metabolismo , Océano Pacífico , Agua de Mar/química
5.
Rapid Commun Mass Spectrom ; 34(19): e8878, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32632996

RESUMEN

RATIONALE: Oxygen (δ18 O) and carbon (δ13 C) isotope analysis of foraminifera and other CaCO3 samples has been a key technique for paleoceanographical and paleoclimatological research for more than 60 years. There is ongoing demand for the analysis of ever smaller CaCO3 samples, driven, for example, by the desire to analyse single specimen planktic foraminifera, or small samples of tooth enamel. METHODS: We present a continuous-flow mass spectrometric technique that uses cryo-focusing of sample CO2 to analyse CaCO3 samples in a weight range between 10 and 3 µg. These are considerably lower sample weights than achievable on most currently available standard instrumentation. The technique is automated, so that sample throughput lies at >60 samples per day. The method involves an on-line vial-flushing routine designed to remove machine drift due to blank CO2 build-up in the sample vials. RESULTS: In a series of experiments the effect of blank CO2 build-up is quantified, and outgassing from the chlorobutyl septa identified as the source. An improved flushing routine together with the use of a cryo-focusing step in the analysis is demonstrated to provide the analytical stability and sensitivity to analyse CaCO3 samples in a weight range between 10 and 3 µg at ≤0.1‰ precision (1σ) for both δ18 O and δ13 C values. The technique yields similarly precise results for the analysis of the structural carbonate fraction of small tooth enamel samples. CONCLUSIONS: This study demonstrates that high-precision oxygen and carbon isotope analysis is possible on CaCO3 samples smaller than 5 µg by use of a continuous-flow isotope technique. Of key importance are (1) the application of a cold trap that drastically reduces sample gas loss, and (2) a modified flushing regime that eliminates increasing background CO2 build-up in sample vials during longer automated sample runs.

7.
Nat Ecol Evol ; 3(4): 577-581, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833757

RESUMEN

The dawn of animals remains one of the most mysterious milestones in the evolution of life. The fossil lipids 24-isopropylcholestane and 26-methylstigmastane are considered diagnostic for demosponges-arguably the oldest group of living animals. The widespread occurrence and high relative abundance of these biomarkers in Ediacaran sediments from 635-541 million years (Myr) ago have been viewed as evidence for the rise of animals to ecological importance approximately 100 Myr before their rapid Cambrian radiation. Here we show that the biosynthesis of 24-isopropylcholestane and 26-methylstigmastane precursors is common among early-branching unicellular Rhizaria-heterotrophic protists that play an important role in trophic cycling and carbon export in the modern ocean. Negating these hydrocarbons as sponge biomarkers, our study places the oldest evidence for animals closer to the Cambrian Explosion. Cambrian silica hexactine spicules that are approximately 535 Myr old now represent the oldest diagnostic sponge remains, whereas approximately 558-Myr-old Dickinsonia and Kimberella (Ediacara biota) provide the most reliable evidence for the emergence of animals. The proliferation of predatory protists may have been responsible for much of the ecological changes during the late Neoproterozoic, including the rise of algae, the establishment of complex trophic relationships and the oxygenation of shallow-water habitats required for the subsequent ascent of macroscopic animals.


Asunto(s)
Poríferos , Rhizaria , Esteroles , Animales , Biomarcadores , Filogenia
8.
Isotopes Environ Health Stud ; 50(2): 184-200, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24437609

RESUMEN

The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.


Asunto(s)
Deuterio/análisis , Lagos/química , Manantiales Naturales/química , Isótopos de Oxígeno/análisis , Ríos/química , Cambio Climático , Francia , Hidrología
9.
Bioinform Biol Insights ; 3: 155-77, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20140067

RESUMEN

The high sequence divergence within the small subunit ribosomal RNA gene (SSU rDNA) of foraminifera makes it difficult to establish the homology of individual nucleotides across taxa. Alignment-based approaches so far relied on time-consuming manual alignments and discarded up to 50% of the sequenced nucleotides prior to phylogenetic inference. Here, we investigate the potential of the multiple analysis approach to infer a molecular phylogeny of all modern planktonic foraminiferal taxa by using a matrix of 146 new and 153 previously published SSU rDNA sequences. Our multiple analysis approach is based on eleven different automated alignments, analysed separately under the maximum likelihood criterion. The high degree of congruence between the phylogenies derived from our novel approach, traditional manually homologized culled alignments and the fossil record indicates that poorly resolved nucleotide homology does not represent the most significant obstacle when exploring the phylogenetic structure of the SSU rDNA in planktonic foraminifera. We show that approaches designed to extract phylogenetically valuable signals from complete sequences show more promise to resolve the backbone of the planktonic foraminifer tree than attempts to establish strictly homologous base calls in a manual alignment.

10.
Science ; 303(5655): 207-10, 2004 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-14716007

RESUMEN

We characterize the evolutionary radiation of planktic foraminifera by the test size distributions of entire assemblages in more than 500 Cenozoic marine sediment samples, including more than 1 million tests. Calibration of Holocene size patterns with environmental parameters and comparisons with Cenozoic paleoproxy data show a consistently positive correlation between test size and surface-water stratification intensity. We infer that the observed macroevolutionary increase in test size of planktic foraminifera through the Cenozoic was an adaptive response to intensifying surface-water stratification in low latitudes, which was driven by polar cooling.


Asunto(s)
Evolución Biológica , Plancton , Animales , Clima , Ecosistema , Eucariontes/química , Eucariontes/citología , Geografía , Isótopos de Oxígeno/análisis , Plancton/química , Plancton/citología , Agua de Mar , Temperatura , Tiempo , Zooplancton/química , Zooplancton/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...