Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(8): e0273264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36001559

RESUMEN

Large cellular antigens comprise a variety of different epitopes leading to a T cell response of extreme diversity. Therefore, tracking such a response by next generation sequencing of the T cell receptor (TCR) in order to identify common TCR properties among the expanding T cells represents an enormous challenge. In the present study we adapted a set of established indices to elucidate alterations in the TCR repertoire regarding sequence similarities between TCRs including VJ segment usage and diversity of nucleotide coding of a single TCR. We combined the usage of these indices with a new systematic splitting strategy regarding the copy number of the extracted clones to divide the repertoire into multiple fractions for separate analysis. We implemented this new analytic approach using the splenic TCR repertoire following immunization with sheep red blood cells (SRBC) in mice. As expected, early after immunization presumably antigen-specific clones accumulated in high copy number fractions, but at later time points similar accumulation of specific clones occurred within the repertoire fractions of lowest copy number. For both repertoire regions immunized animals could reliably be distinguished from control in a classification approach, demonstrating the robustness of the two effects at the individual level. The direction in which the indices shifted after immunization revealed that for both the early and the late effect alterations in repertoire parameters were caused by antigen-specific private clones displacing non-specific public clones. Taken together, tracking antigen-specific clones by their displacement of average TCR repertoire characteristics in standardized repertoire fractions ensures that our analytical approach is fairly independent from the antigen in question and thus allows the in-depth characterization of a variety of immune responses.


Asunto(s)
Variaciones en el Número de Copia de ADN , Receptores de Antígenos de Linfocitos T , Animales , Células Clonales , Inmunidad , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Ovinos , Linfocitos T
2.
Brain Behav Immun Health ; 16: 100312, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34589803

RESUMEN

It is well known that sleep promotes immune functions. In line with this, a variety of studies in animal models and humans have shown that sleep restriction following an antigen challenge dampens the immune response on several levels which leads to e.g. worsening of disease outcome and reduction of vaccination efficiency, respectively. However, the inverse scenario with sleep restriction preceding an antigen challenge is only investigated in a few animal models where it has been shown to reduce antigen uptake and presentation as well as pathogen clearance and survival rates. Here, we use injection of sheep red blood cells to investigate the yet unknown effect on a T cell-dependent B cell response in a well-established mouse model. We found that 6 â€‹h of sleep restriction prior to the antigen challenge does not impact the T cell reaction including the T cell receptor repertoire but dampens the development of germinal centers which correlates with reduced antigen-specific antibody titer indicating an impaired B cell response. These changes concerned a functionally more relevant level than those found in the same experimental model with the inverse scenario when sleep restriction followed the antigen challenge. Taken together, our findings showed that the outcome of the T cell-dependent B cell response is indeed impacted by sleep restriction prior to the antigen challenge which highlights the clinical significance of this scenario and the need for further investigations in humans, for example concerning the effect of sleep restriction preceding a vaccination.

3.
Brain Behav Immun Health ; 5: 100082, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-34589857

RESUMEN

Sleep is known to improve immune function ranging from cell distribution in the naïve state to elevated antibody titers after an immune challenge. The underlying mechanisms still remain unclear, partially because most studies have focused on the analysis of blood only. Hence, we investigated the effects of sleep within the spleen in female C57BL/6J mice with normal sleep compared to short-term sleep-deprived animals both in the naïve state and after an antigen challenge. Lack of sleep decreased the expression of genes associated with immune cell recruitment into and antigen presentation within the spleen both in the naïve state and during a T cell dependent B cell response directed against sheep red blood cells (SRBC). However, neither T cell proliferation nor formation of SRBC-specific antibodies was affected. In addition, the T cell receptor repertoire recruited into the immune response within seven days was not influenced by sleep deprivation. Thus, sleep modulated the molecular milieu within the spleen whereas we could not detect corresponding changes in the primary immune response against SRBC. Further studies will show whether sleep influences the secondary immune response against SRBC or the development of the B cell receptor repertoire, and how this can be compared to other antigens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...