Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972020

RESUMEN

Currently, the world's only source of low-energy antiprotons is the AD/ELENA facility located at CERN. To date, all precision measurements on single antiprotons have been conducted at this facility and provide stringent tests of fundamental interactions and their symmetries. However, magnetic field fluctuations from the facility operation limit the precision of upcoming measurements. To overcome this limitation, we have designed the transportable antiproton trap system BASE-STEP to relocate antiprotons to laboratories with a calm magnetic environment. We anticipate that the transportable antiproton trap will facilitate enhanced tests of charge, parity, and time-reversal invariance with antiprotons and provide new experimental possibilities of using transported antiprotons and other accelerator-produced exotic ions. We present here the technical design of the transportable trap system. This includes the transportable superconducting magnet, the cryogenic inlay consisting of the trap stack and detection systems, and the differential pumping section to suppress the residual gas flow into the cryogenic trap chamber.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37288385

RESUMEN

Abstract: The BASE collaboration at the antiproton decelerator/ELENA facility of CERN compares the fundamental properties of protons and antiprotons with ultra-high precision. Using advanced Penning trap systems, we have measured the proton and antiproton magnetic moments with fractional uncertainties of 300 parts in a trillion (p.p.t.) and 1.5 parts in a billion (p.p.b.), respectively. The combined measurements improve the resolution of the previous best test in that sector by more than a factor of 3000. Very recently, we have compared the antiproton/proton charge-to-mass ratios with a fractional precision of 16 p.p.t., which improved the previous best measurement by a factor of 4.3. These results allowed us also to perform a differential matter/antimatter clock comparison test to limits better than 3%. Our measurements enable us to set limits on 22 coefficients of CPT- and Lorentz-violating standard model extensions (SME) and to search for potentially asymmetric interactions between antimatter and dark matter. In this article, we review some of the recent achievements and outline recent progress towards a planned improved measurement of the antiproton magnetic moment with an at least tenfold improved fractional accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA