Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(27): 9877-9892, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35781298

RESUMEN

Realization of stable spin states in surface-supported magnetic molecules is crucial for their applications in molecular spintronics, memory storage or quantum information processing. In this work, we studied the surface magnetism of dimetallo-azafullerene Tb2@C79N, showing a broad magnetic hysteresis in a bulk form. Surprisingly, monolayers of Tb2@C79N exhibited a completely different behavior, with the prevalence of a ground state with antiferromagnetic coupling at low magnetic field and a metamagnetic transition in the magnetic field of 2.5-4 T. Monolayers of Tb2@C79N were deposited onto Cu(111) and Au(111) by evaporation in ultra-high vacuum conditions, and their topography and electronic structure were characterized by scanning tunneling microscopy and spectroscopy (STM/STS). X-ray photoelectron spectroscopy (XPS), in combination with DFT studies, revealed that the nitrogen atom of the azafullerene cage tends to avoid metallic surfaces. Magnetic properties of the (sub)monolayers were then studied by X-ray magnetic circular dichroism (XMCD) at the Tb-M4,5 absorption edge. While in bulk powder samples Tb2@C79N behaves as a single-molecule magnet with ferromagnetically coupled magnetic moments and blocking of magnetization at 28 K, its monolayers exhibited a different ground state with antiferromagnetic coupling of Tb magnetic moments. To understand if this unexpected behavior is caused by a strong hybridization of fullerenes with metallic substrates, XMCD measurements were also performed for Tb2@C79N adsorbed on h-BN|Rh(111) and MgO|Ag(100). The co-existence of two forms of Tb2@C79N was found on these substrates as well, but magnetization curves showed narrow magnetic hysteresis detectable up to 25 K. The non-magnetic state of Tb2@C79N in monolayers is assigned to anionic Tb2@C79N- species with doubly-occupied Tb-Tb bonding orbital and antiferromagnetic coupling of the Tb moments. A charge transfer from the substrate or trapping of secondary electrons are discussed as a plausible origin of these species.

2.
Adv Sci (Weinh) ; 8(5): 2000777, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33717832

RESUMEN

Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low-dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self-assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene-SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X-ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self-assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self-assembly of fullerene-SMM derivatives offers a facile solution-based procedure for the preparation of functional magnetic sub-monolayers with excellent SMM performance.

3.
Angew Chem Int Ed Engl ; 59(14): 5756-5764, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31860759

RESUMEN

Magnetic hysteresis is demonstrated for monolayers of the single-molecule magnet (SMM) Dy2 ScN@C80 deposited on Au(111), Ag(100), and MgO|Ag(100) surfaces by vacuum sublimation. The topography and electronic structure of Dy2 ScN@C80 adsorbed on Au(111) were studied by STM. X-ray magnetic CD studies show that the Dy2 ScN@C80 monolayers exhibit similarly broad magnetic hysteresis independent on the substrate used, but the orientation of the Dy2 ScN cluster depends strongly on the surface. DFT calculations show that the extent of the electronic interaction of the fullerene molecules with the surface is increasing dramatically from MgO to Au(111) and Ag(100). However, the charge redistribution at the fullerene-surface interface is fully absorbed by the carbon cage, leaving the state of the endohedral cluster intact. This Faraday cage effect of the fullerene preserves the magnetic bistability of fullerene-SMMs on conducting substrates and facilitates their application in molecular spintronics.

4.
Beilstein J Nanotechnol ; 8: 1127-1134, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28685113

RESUMEN

We performed a study on the fundamental adsorption characteristics of Er3N@C80 deposited on W(110) and Au(111) via room temperature scanning tunneling microscopy and spectroscopy. Adsorbed on W(110), a comparatively strong bond to the endohedral fullerenes inhibited the formation of ordered monolayer islands. In contrast, the Au(111)-surface provides a sufficiently high mobility for the molecules to arrange in monolayer islands after annealing. Interestingly, the fullerenes modify the herringbone reconstruction indicating that the molecule-substrate interaction is of considerable extent. Investigations concerning the electronic structure of Er3N@C80/Au(111) reveals spatial variations dependent on the termination of the Au(111) at the interface.

5.
Langmuir ; 32(18): 4464-71, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27093097

RESUMEN

Molecular anchoring and electronic properties of macrocyclic complexes fixed on gold surfaces have been investigated mainly by using scanning tunnelling microscopy (STM) and complemented with X-ray photoelectron spectroscopy (XPS). Exchange-coupled macrocyclic complexes [Ni2L(Hmba)](+) were deposited via 4-mercaptobenzoate ligands on the surface of a Au(111) single crystal from a mM solution of the perchlorate salt [Ni2L(Hmba)]ClO4 in dichloromethane. The combined results from STM and XPS show the formation of large monolayers anchored via Au-S bonds with a height of about 1.5 nm. Two apparent granular structures are visible: one related to the dinickel molecular complexes (cationic structures) and a second one related to the counterions ClO4(-) which stabilize the monolayer. No type of short and long-range order is observed. STM tip-interaction with the monolayer reveals higher degradation after 8 h of measurement. Spectroscopy measurements suggest a gap of about 2.5 eV between HOMO and LUMO of the cationic structures and smaller gap in the areas related to the anionic structures.

6.
Z Med Phys ; 25(3): 264-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25791740

RESUMEN

The aim of this work was the development of a software tool for treatment planning prior to molecular radiotherapy, which comprises all functionality to objectively determine the activity to administer and the pertaining absorbed doses (including the corresponding error) based on a series of gamma camera images and one SPECT/CT or probe data. NUKDOS was developed in MATLAB. The workflow is based on the MIRD formalism For determination of the tissue or organ pharmacokinetics, gamma camera images as well as probe, urine, serum and blood activity data can be processed. To estimate the time-integrated activity coefficients (TIAC), sums of exponentials are fitted to the time activity data and integrated analytically. To obtain the TIAC on the voxel level, the voxel activity distribution from the quantitative 3D SPECT/CT (or PET/CT) is used for scaling and weighting the TIAC derived from the 2D organ data. The voxel S-values are automatically calculated based on the voxel-size of the image and the therapeutic nuclide ((90)Y, (131)I or (177)Lu). The absorbed dose coefficients are computed by convolution of the voxel TIAC and the voxel S-values. The activity to administer and the pertaining absorbed doses are determined by entering the absorbed dose for the organ at risk. The overall error of the calculated absorbed doses is determined by Gaussian error propagation. NUKDOS was tested for the operation systems Windows(®) 7 (64 Bit) and 8 (64 Bit). The results of each working step were compared to commercially available (SAAMII, OLINDA/EXM) and in-house (UlmDOS) software. The application of the software is demonstrated using examples form peptide receptor radionuclide therapy (PRRT) and from radioiodine therapy of benign thyroid diseases. For the example from PRRT, the calculated activity to administer differed by 4% comparing NUKDOS and the final result using UlmDos, SAAMII and OLINDA/EXM sequentially. The absorbed dose for the spleen and tumour differed by 7% and 8%, respectively. The results from the example from radioiodine therapy of benign thyroid diseases and the example given in the latest corresponding SOP were identical. The implemented, objective methods facilitate accurate and reproducible results. The software is freely available.


Asunto(s)
Radioisótopos de Yodo/uso terapéutico , Modelos Biológicos , Planificación de la Radioterapia Asistida por Computador/métodos , Programas Informáticos , Enfermedades de la Tiroides/radioterapia , Absorción de Radiación , Simulación por Computador , Humanos , Radiofármacos/uso terapéutico , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Diseño de Software , Validación de Programas de Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...