Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(11): 3248-3258, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38477707

RESUMEN

T-DNA transformation is prevalent in Arabidopsis research and has expanded to a broad range of crops and model plants. While major progress has been made in optimizing the Agrobacterium-mediated transformation process for various species, a variety of pitfalls associated with the T-DNA insertion may lead to the misinterpretation of T-DNA mutant analysis. Indeed, secondary mutagenesis either on the integration site or elsewhere in the genome, together with epigenetic interactions between T-DNA inserts or frequent genomic rearrangements, can be tricky to differentiate from the effect of the knockout of the gene of interest. These are mainly the case for genomic rearrangements that become balanced in filial generations without consequential phenotypical defects, which may be confusing particularly for studies that aim to investigate fertility and gametogenesis. As a cautionary note to the plant research community studying gametogenesis, we here report an overview of the consequences of T-DNA-induced secondary mutagenesis with emphasis on the genomic imbalance on gametogenesis. Additionally, we present a simple guideline to evaluate the T-DNA-mutagenized transgenic lines to decrease the risk of faulty analysis with minimal experimental effort.


Asunto(s)
ADN Bacteriano , ADN Bacteriano/genética , Mutagénesis , Arabidopsis/genética , Plantas Modificadas Genéticamente/genética , Reproducción/genética
2.
Front Plant Sci ; 14: 1210092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521921

RESUMEN

Susceptibility of the reproductive system to temperature fluctuations is a recurrent problem for crop production under a changing climate. The damage is complex as multiple processes in male and female gamete formation are affected, but in general, particularly pollen production is impaired. Here, the impact of short periods of elevated temperature on male meiosis of tomato (Solanum lycopersicon L.) is reported. Meiocytes in early stage flower buds exposed to heat stress (>35°C) exhibit impaired homolog synapsis resulting in partial to complete omission of chiasmata formation. In the absence of chiasmata, univalents segregate randomly developing unbalanced tetrads and polyads resulting in aneuploid spores. However, most heat-stressed meiotic buds primarily contain balanced dyads, indicating a propensity to execute meiotic restitution. With most meiocytes exhibiting a complete loss of chiasma formation and concomitantly showing a mitotic-like division, heat stress triggers first division restitution resulting in clonal spores. These findings corroborate with the plasticity of male meiosis under heat and establish a natural route for the induction of sexual polyploidization in plants and the engineering of clonal seed.

3.
Plant Reprod ; 34(3): 243-253, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34021795

RESUMEN

KEY MESSAGE: Short-term heat stress during male meiosis causes defects in crossover formation, meiotic progression and cell wall formation in the monocot barley, ultimately leading to pollen abortion. High temperature conditions cause a reduction of fertility due to alterations in meiotic processes and gametogenesis. The male gametophyte development has been shown to be particularly sensitive to heat stress, and even short-term and modest temperature shifts cause alterations in crossover formation. In line with previous reports, we observed that male meiosis in the monocot barley exposed for 24-45 h to heat stress (32-42 °C) partially or completely eliminates obligate crossover formation and causes unbalanced chromosome segregation and meiotic abortion. Depending on the severity of heat stress, the structure and organization of the chromosomes were altered. In addition to alterations in chromosome structure and dynamics, heat treatment abolished or reduced the formation of a callose wall surrounding the meiocytes and interrupted the cell cycle progression leading to cytokinesis defects and microspore cell death.


Asunto(s)
Hordeum , Infertilidad Masculina , Citocinesis , Respuesta al Choque Térmico , Hordeum/genética , Humanos , Meiosis
4.
Genes (Basel) ; 12(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916197

RESUMEN

Meiosis drives reciprocal genetic exchanges and produces gametes with halved chromosome number, which is important for the genetic diversity, plant viability, and ploidy consistency of flowering plants. Alterations in chromosome dynamics and/or cytokinesis during meiosis may lead to meiotic restitution and the formation of unreduced microspores. In this study, we isolated an Arabidopsis mutant male meiotic restitution 1 (mmr1), which produces a small subpopulation of diploid or polyploid pollen grains. Cytological analysis revealed that mmr1 produces dyads, triads, and monads indicative of male meiotic restitution. Both homologous chromosomes and sister chromatids in mmr1 are separated normally, but chromosome condensation at metaphase I is slightly affected. The mmr1 mutant displayed incomplete meiotic cytokinesis. Supportively, immunostaining of the microtubular cytoskeleton showed that the spindle organization at anaphase II and mini-phragmoplast formation at telophase II are aberrant. The causative mutation in mmr1 was mapped to chromosome 1 at the chromatin regulator Male Meiocyte Death 1 (MMD1/DUET) locus. mmr1 contains a C-to-T transition at the third exon of MMD1/DUET at the genomic position 2168 bp from the start codon, which causes an amino acid change G618D that locates in the conserved PHD-finger domain of histone binding proteins. The F1 progenies of mmr1 crossing with knockout mmd1/duet mutant exhibited same meiotic defects and similar meiotic restitution rate as mmr1. Taken together, we here report a hypomorphic mmd1/duet allele that typically shows defects in microtubule organization and cytokinesis.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción/química , Factores de Transcripción/genética , Arabidopsis/genética , Segregación Cromosómica , Cromosomas de las Plantas/genética , Meiosis , Dedos de Zinc PHD , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...