Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(8): 086802, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36053690

RESUMEN

We compare the ion-induced electron emission from freestanding monolayers of graphene and MoS_{2} to find a sixfold higher number of emitted electrons for graphene even though both materials have similar work functions. An effective single-band Hubbard model explains this finding by a charge-up in MoS_{2} that prevents low energy electrons from escaping the surface within a period of a few femtoseconds after ion impact. We support these results by measuring the electron energy distribution for correlated pairs of electrons and transmitted ions. The majority of emitted primary electrons have an energy below 10 eV and are therefore subject to the dynamic charge-up effects at surfaces.

2.
Phys Rev Lett ; 124(7): 076601, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142347

RESUMEN

The dynamics of strongly correlated fermions following an external excitation reveals extremely rich collective quantum effects. Examples are fermionic atoms in optical lattices, electrons in correlated materials, and dense quantum plasmas. Presently, the only quantum-dynamics approach that rigorously describes these processes in two and three dimensions is the nonequilibrium Green functions (NEGF) method. However, NEGF simulations are computationally expensive due to their T^{3} scaling with the simulation duration T. Recently, T^{2} scaling was achieved with the generalized Kadanoff-Baym ansatz (GKBA), for second-order Born (SOA) selfenergies, which has substantially extended the scope of NEGF simulations. Here we demonstrate that GKBA-NEGF simulations can be performed with order T^{1} scaling, both for SOA and GW selfenergies, and point out the remarkable capabilities of this approach.

3.
Phys Rev Lett ; 121(26): 267602, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636139

RESUMEN

Strongly correlated systems of fermions have a number of exciting collective properties. Among them, the creation of a lattice that is occupied by doublons, i.e., two quantum particles with opposite spins, offers interesting electronic properties. In the past a variety of methods have been proposed to control doublon formation, both, spatially and temporally. Here, a novel mechanism is proposed and verified by exact diagonalization and nonequilibrium Green functions simulations-fermionic doublon creation by the impact of energetic ions. We report the formation of a nonequilibrium steady state with homogeneous doublon distribution. The effect should be particularly important for strongly correlated finite systems, such as graphene nanoribbons, and directly observable with fermionic atoms in optical lattices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...