Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Crit Care Med ; 52(2): 190-199, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240505

RESUMEN

OBJECTIVE: Proton pump inhibitors (PPIs) are among the drugs most commonly used in critically ill patients. Although mainly applied temporarily for stress ulcer prophylaxis, their application is frequently not terminated. Potential adverse effects of PPI treatment could impact the outcome in case of unnecessary and, therefore, avoidable long-term continuation. We tested the hypotheses that nonindicated PPI therapy continued beyond hospital discharge is associated with increased morbidity, rehospitalization rate, and mortality. DESIGN: Nationwide retrospective cohort study considering critically ill patients treated on German ICUs between January, 2017, and December, 2018 with a 2-year follow-up. SETTING: A total of 591,207 patient datasets of a German healthcare insurer were screened. PATIENTS: We identified 11,576 ICU patients who received PPI therapy for the first time during their index ICU stay without having an indication for its continuation. INTERVENTIONS: The cohort was stratified into two groups: 1) patients without further PPI therapy and 2) patients with continuation of PPI therapy beyond 8 weeks after hospital discharge. MEASUREMENTS AND MAIN RESULTS: Frequency of predescribed adverse events associated with PPI therapy, 1-year rehospitalization rate, and 2-year mortality were determined. The proportion of patients with continued PPI therapy without an objectifiable indication was 41.7% (4,825 of 11,576 patients). These patients had a 27% greater risk of pneumonia (odds ratio [OR] 1.27; 95% CI, 1.15-1.39; p < 0.001) and a 17% greater risk of cardiovascular events (OR 1.17; 95% CI, 1.08-1.26; p < 0.001). Continued PPI therapy was associated with a 34% greater risk of rehospitalization (OR 1.34; 95% CI, 1.23-1.47) and a nearly 20% greater 2-year mortality risk (hazard ratio 1.17; 95% CI, 1.08-1.27; p = 0.006). CONCLUSIONS: These data demonstrate that an unnecessary continuation of PPI therapy after hospital discharge may significantly impact morbidity and mortality. To avoid potentially harmful overuse of a PPIs, intensivists should ensure timely cessation of a temporarily indicated PPI therapy.


Asunto(s)
Enfermedad Crítica , Inhibidores de la Bomba de Protones , Humanos , Inhibidores de la Bomba de Protones/efectos adversos , Estudios de Cohortes , Estudios Retrospectivos , Enfermedad Crítica/terapia , Puntaje de Propensión
2.
Water Res ; 250: 121020, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128305

RESUMEN

The yield and productivity of biogas plants depend on the degradation performance of their microbiomes. The spatial separation of the anaerobic digestion (AD) process into a separate hydrolysis and a main fermenter should improve cultivation conditions of the microorganisms involved in the degradation of complex substrates like lignocellulosic biomass (LCB) and, thus, the performance of anaerobic digesters. However, relatively little is known about such two-stage processes. Here, we investigated the process performance of a two-stage agricultural AD over one year, focusing on chemical and technical process parameters and metagenome-centric metaproteomics. Technical and chemical parameters indicated stable operation of the main fermenter but varying conditions for the open hydrolysis fermenter. Matching this, the microbiome in the hydrolysis fermenter has a higher dynamic than in the main fermenter. Metaproteomics-based microbiome analysis revealed a partial separation between early and common steps in carbohydrate degradation and primary fermentation in the hydrolysis fermenter but complex carbohydrate degradation, secondary fermentation, and methanogenesis in the main fermenter. Detailed metagenomics and metaproteomics characterization of the single metagenome-assembled genomes showed that the species focus on specific substrate niches and do not utilize their full genetic potential to degrade, for example, LCB. Overall, it seems that a separation of AD in a hydrolysis and a main fermenter does not improve the cleavage of complex substrates but significantly improves the overall process performance. In contrast, the remaining methanogenic activity in the hydrolysis fermenter may cause methane losses.


Asunto(s)
Reactores Biológicos , Lignina , Anaerobiosis , Lignina/metabolismo , Carbohidratos , Metano/metabolismo
3.
Microorganisms ; 11(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37894070

RESUMEN

The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters. Microbial communities were analyzed regarding their taxonomic composition, functional potential, as well as functions expressed on the proteome level. Different abundances of genes and enzymes related to the biogas process could be mostly attributed to different process parameters. Individual MAGs exhibiting different abundances in the digesters were studied in detail, and their roles in the hydrolysis, acidogenesis and acetogenesis steps of anaerobic digestion could be assigned. Methanoculleus thermohydrogenotrophicum was an active hydrogenotrophic methanogen in all three digesters, whereas Methanothermobacter wolfeii was more prevalent at higher process temperatures. Further analysis focused on MAGs, which were abundant in all digesters, indicating their potential to ensure biogas process stability. The most prevalent MAG belonged to the class Limnochordia; this MAG was ubiquitous in all three digesters and exhibited activity in numerous pathways related to different steps of AD.

4.
Environ Microbiome ; 18(1): 26, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36998097

RESUMEN

BACKGROUND: For a sustainable production of food, research on agricultural soil microbial communities is inevitable. Due to its immense complexity, soil is still some kind of black box. Soil study designs for identifying microbiome members of relevance have various scopes and focus on particular environmental factors. To identify common features of soil microbiomes, data from multiple studies should be compiled and processed. Taxonomic compositions and functional capabilities of microbial communities associated with soils and plants have been identified and characterized in the past few decades. From a fertile Loess-Chernozem-type soil located in Germany, metagenomically assembled genomes (MAGs) classified as members of the phylum Thaumarchaeota/Thermoproteota were obtained. These possibly represent keystone agricultural soil community members encoding functions of relevance for soil fertility and plant health. Their importance for the analyzed microbiomes is corroborated by the fact that they were predicted to contribute to the cycling of nitrogen, feature the genetic potential to fix carbon dioxide and possess genes with predicted functions in plant-growth-promotion (PGP). To expand the knowledge on soil community members belonging to the phylum Thaumarchaeota, we conducted a meta-analysis integrating primary studies on European agricultural soil microbiomes. RESULTS: Taxonomic classification of the selected soil metagenomes revealed the shared agricultural soil core microbiome of European soils from 19 locations. Metadata reporting was heterogeneous between the different studies. According to the available metadata, we separated the data into 68 treatments. The phylum Thaumarchaeota is part of the core microbiome and represents a major constituent of the archaeal subcommunities in all European agricultural soils. At a higher taxonomic resolution, 2074 genera constituted the core microbiome. We observed that viral genera strongly contribute to variation in taxonomic profiles. By binning of metagenomically assembled contigs, Thaumarchaeota MAGs could be recovered from several European soil metagenomes. Notably, many of them were classified as members of the family Nitrososphaeraceae, highlighting the importance of this family for agricultural soils. The specific Loess-Chernozem Thaumarchaeota MAGs were most abundant in their original soil, but also seem to be of importance in other agricultural soil microbial communities. Metabolic reconstruction of Switzerland_1_MAG_2 revealed its genetic potential i.a. regarding carbon dioxide (CO[Formula: see text]) fixation, ammonia oxidation, exopolysaccharide production and a beneficial effect on plant growth. Similar genetic features were also present in other reconstructed MAGs. Three Nitrososphaeraceae MAGs are all most likely members of a so far unknown genus. CONCLUSIONS: On a broad view, European agricultural soil microbiomes are similarly structured. Differences in community structure were observable, although analysis was complicated by heterogeneity in metadata recording. Our study highlights the need for standardized metadata reporting and the benefits of networking open data. Future soil sequencing studies should also consider high sequencing depths in order to enable reconstruction of genome bins. Intriguingly, the family Nitrososphaeraceae commonly seems to be of importance in agricultural microbiomes.

5.
Front Microbiol ; 13: 1032515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439843

RESUMEN

Research on biogas-producing microbial communities aims at elucidation of correlations and dependencies between the anaerobic digestion (AD) process and the corresponding microbiome composition in order to optimize the performance of the process and the biogas output. Previously, Lachnospiraceae species were frequently detected in mesophilic to moderately thermophilic biogas reactors. To analyze adaptive genome features of a representative Lachnospiraceae strain, Anaeropeptidivorans aminofermentans M3/9T was isolated from a mesophilic laboratory-scale biogas plant and its genome was sequenced and analyzed in detail. Strain M3/9T possesses a number of genes encoding enzymes for degradation of proteins, oligo- and dipeptides. Moreover, genes encoding enzymes participating in fermentation of amino acids released from peptide hydrolysis were also identified. Based on further findings obtained from metabolic pathway reconstruction, M3/9T was predicted to participate in acidogenesis within the AD process. To understand the genomic diversity between the biogas isolate M3/9T and closely related Anaerotignum type strains, genome sequence comparisons were performed. M3/9T harbors 1,693 strain-specific genes among others encoding different peptidases, a phosphotransferase system (PTS) for sugar uptake, but also proteins involved in extracellular solute binding and import, sporulation and flagellar biosynthesis. In order to determine the occurrence of M3/9T in other environments, large-scale fragment recruitments with the M3/9T genome as a template and publicly available metagenomes representing different environments was performed. The strain was detected in the intestine of mammals, being most abundant in goat feces, occasionally used as a substrate for biogas production.

6.
mBio ; 13(5): e0194922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36073816

RESUMEN

Rhizobia are Gram-negative bacteria that are able to establish a nitrogen-fixing symbiotic interaction with leguminous plants. Rhizobia genomes usually harbor several plasmids which can be transferred to other organisms by conjugation. Two main mechanisms of the regulation of rhizobial plasmid transfer have been described: quorum sensing (QS) and the rctA/rctB system. Nevertheless, new genes and molecules that modulate conjugative transfer have recently been described, demonstrating that new actors can tightly regulate the process. In this work, by means of bioinformatics tools and molecular biology approaches, two hypothetical genes are identified as playing key roles in conjugative transfer. These genes are located between conjugative genes of plasmid pRfaLPU83a from Rhizobium favelukesii LPU83, a plasmid that shows a conjugative transfer behavior depending on the genomic background. One of the two mentioned genes, rcgA, is essential for conjugation, while the other, rcgR, acts as an inhibitor of the process. In addition to introducing this new regulatory system, we show evidence of the functions of these genes in different genomic backgrounds and confirm that homologous proteins from non-closely related organisms have the same functions. These findings set up the basis for a new regulatory circuit of the conjugative transfer of plasmids. IMPORTANCE Extrachromosomal DNA elements, such as plasmids, allow for the adaptation of bacteria to new environments by conferring new determinants. Via conjugation, plasmids can be transferred between members of the same bacterial species, different species, or even to organisms belonging to a different kingdom. Knowledge about the regulatory systems of plasmid conjugative transfer is key in understanding the dynamics of their dissemination in the environment. As the increasing availability of genomes raises the number of predicted proteins with unknown functions, deeper experimental procedures help to elucidate the roles of these determinants. In this work, two uncharacterized proteins that constitute a new regulatory circuit with a key role in the conjugative transfer of rhizobial plasmids were discovered.


Asunto(s)
Conjugación Genética , Percepción de Quorum , Plásmidos/genética , Bacterias/genética , Nitrógeno , ADN , Transferencia de Gen Horizontal
7.
Microorganisms ; 10(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35208823

RESUMEN

The microbial biogas network is complex and intertwined, and therefore relatively stable in its overall functionality. However, if key functional groups of microorganisms are affected by biotic or abiotic factors, the entire efficacy may be impaired. Bacteriophages are hypothesized to alter the steering process of the microbial network. In this study, an enriched fraction of virus-like particles was extracted from a mesophilic biogas reactor and sequenced on the Illumina MiSeq and Nanopore GridION sequencing platforms. Metagenome data analysis resulted in identifying 375 metagenome-assembled viral genomes (MAVGs). Two-thirds of the classified sequences were only assigned to the superkingdom Viruses and the remaining third to the family Siphoviridae, followed by Myoviridae, Podoviridae, Tectiviridae, and Inoviridae. The metavirome showed a close relationship to the phage genomes that infect members of the classes Clostridia and Bacilli. Using publicly available biogas metagenomic data, a fragment recruitment approach showed the widespread distribution of the MAVGs studied in other biogas microbiomes. In particular, phage sequences from mesophilic microbiomes were highly similar to the phage sequences of this study. Accordingly, the virus particle enrichment approach and metavirome sequencing provided additional genome sequence information for novel virome members, thus expanding the current knowledge of viral genetic diversity in biogas reactors.

8.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748496

RESUMEN

An anaerobic bacterial strain, designated strain M3/9T, was isolated from a laboratory-scale biogas fermenter fed with maize silage supplemented with 5 % wheat straw. Cells were straight, non-motile rods, which stained Gram-negative. Optimal growth occurred between 30 and 40°C, at pH 7.5-8.5, and up to 3.9 % (w/v) NaCl was tolerated. When grown on peptone from casein and soymeal, strain M3/9T produced mainly acetic acid, ethanol, and isobutyric acid. The major cellular fatty acids of the novel strain were C16 : 0 and C16 : 0 DMA. The genome of strain M3/9T is 3757  330 bp in size with a G+C content of 38.45 mol%. Phylogenetic analysis allocated strain M3/9T within the family Lachnospiraceae with Clostridium colinum DSM 6011T and Anaerotignum lactatifermentans DSM 14214T being the most closely related species sharing 57.86 and 56.99% average amino acid identity and 16S rRNA gene sequence similarities of 91.58 and 91.26 %, respectively. Based on physiological, chemotaxonomic and genetic data, we propose the description of a novel species and genus Anaeropeptidivorans aminofermentans gen. nov., sp. nov., represented by the type strain M3/9T (=DSM 100058T=LMG 29527T). In addition, an emended description of Clostridium colinum is provided.


Asunto(s)
Biocombustibles , Ácidos Grasos , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Composición de Base , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Clostridium/genética
9.
J Fungi (Basel) ; 7(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34682252

RESUMEN

Rhizoctonia solani AG1-IB of the phylum Basidiomycota is known as phytopathogenic fungus affecting various economically important crops, such as bean, rice, soybean, figs, cabbage and lettuce. The isolates 1/2/21 and O8/2 of the anastomosis group AG1-IB originating from lettuce plants with bottom rot symptoms represent two less aggressive R. solani isolates, as confirmed in a pathogenicity test on lettuce. They were deeply sequenced on the Illumina MiSeq system applying the mate-pair and paired-end mode to establish their genome sequences. Assemblies of obtained sequences resulted in 2092 and 1492 scaffolds, respectively, for isolate 1/2/21 and O8/2, amounting to a size of approximately 43 Mb for each isolate. Gene prediction by applying AUGUSTUS (v. 3.2.1.) yielded 12,827 and 12,973 identified genes, respectively. Based on automatic functional annotation, genes potentially encoding cellulases and enzymes involved in secondary metabolite synthesis were identified in the AG1-IB genomes. The annotated genome sequences of the less aggressive AG1-IB isolates were compared with the isolate 7/3/14, which is highly aggressive on lettuce and other vegetable crops such as bean, cabbage and carrot. This analysis revealed the first insights into core genes of AG1-IB isolates and unique determinants of each genome that may explain the different aggressiveness levels of the strains.

10.
Microorganisms ; 9(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34361893

RESUMEN

There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.

11.
Microorganisms ; 9(2)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669534

RESUMEN

A growing body of evidence demonstrates the potential of various microbes to enhance plant productivity in cropping systems although their successful field application may be impaired by several biotic and abiotic constraints. In the present work, we aimed at developing multifunctional synthetic microbial consortia to be used in combination with suitable bioactive compounds for improving crop yield and quality. Plant growth-promoting microorganisms (PGPMs) with different functional attributes were identified by a bottom-up approach. A comprehensive literature survey on PGPMs associated with maize, wheat, potato and tomato, and on commercial formulations, was conducted by examining peer-reviewed scientific publications and results from relevant European projects. Metagenome fragment recruitments on genomes of potential PGPMs represented in databases were also performed to help identify plant growth-promoting (PGP) strains. Following evidence of their ability to coexist, isolated PGPMs were synthetically assembled into three different microbial consortia. Additionally, the effects of bioactive compounds on the growth of individually PGPMs were tested in starvation conditions. The different combination products based on microbial and non-microbial biostimulants (BS) appear worth considering for greenhouse and open field trials to select those potentially adoptable in sustainable agriculture.

12.
Front Plant Sci ; 12: 642576, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643369

RESUMEN

One of the greatest inputs of available nitrogen into the biosphere occurs through the biological N2-fixation to ammonium as result of the symbiosis between rhizobia and leguminous plants. These interactions allow increased crop yields on nitrogen-poor soils. Exopolysaccharides (EPS) are key components for the establishment of an effective symbiosis between alfalfa and Ensifer meliloti, as bacteria that lack EPS are unable to infect the host plants. Rhizobium favelukesii LPU83 is an acid-tolerant rhizobia strain capable of nodulating alfalfa but inefficient to fix nitrogen. Aiming to identify the molecular determinants that allow R. favelukesii to infect plants, we studied its EPS biosynthesis. LPU83 produces an EPS I identical to the one present in E. meliloti, but the organization of the genes involved in its synthesis is different. The main gene cluster needed for the synthesis of EPS I in E. meliloti, is split into three different sections in R. favelukesii, which probably arose by a recent event of horizontal gene transfer. A R. favelukesii strain devoided of all the genes needed for the synthesis of EPS I is still able to infect and nodulate alfalfa, suggesting that attention should be directed to other molecules involved in the development of the symbiosis.

13.
Microorganisms ; 8(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348776

RESUMEN

Members of the genera Proteiniphilum and Petrimonas were speculated to represent indicators reflecting process instability within anaerobic digestion (AD) microbiomes. Therefore, Petrimonas mucosa ING2-E5AT was isolated from a biogas reactor sample and sequenced on the PacBio RSII and Illumina MiSeq sequencers. Phylogenetic classification positioned the strain ING2-E5AT in close proximity to Fermentimonas and Proteiniphilum species (family Dysgonomonadaceae). ING2-E5AT encodes a number of genes for glycosyl-hydrolyses (GH) which are organized in Polysaccharide Utilization Loci (PUL) comprising tandem susCD-like genes for a TonB-dependent outer-membrane transporter and a cell surface glycan-binding protein. Different GHs encoded in PUL are involved in pectin degradation, reflecting a pronounced specialization of the ING2-E5AT PUL systems regarding the decomposition of this polysaccharide. Genes encoding enzymes participating in amino acids fermentation were also identified. Fragment recruitments with the ING2-E5AT genome as a template and publicly available metagenomes of AD microbiomes revealed that Petrimonas species are present in 146 out of 257 datasets supporting their importance in AD microbiomes. Metatranscriptome analyses of AD microbiomes uncovered active sugar and amino acid fermentation pathways for Petrimonas species. Likewise, screening of metaproteome datasets demonstrated expression of the Petrimonas PUL-specific component SusC providing further evidence that PUL play a central role for the lifestyle of Petrimonas species.

14.
FEMS Microbiol Ecol ; 97(1)2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33220679

RESUMEN

Acidic environments naturally occur worldwide and inappropriate agricultural management may also cause acidification of soils. Low soil pH values are an important barrier in the plant-rhizobia interaction. Acidic conditions disturb the establishment of the efficient rhizobia usually used as biofertilizer. This negative effect on the rhizobia-legume symbiosis is mainly due to the low acid tolerance of the bacteria. Here, we describe the identification of relevant factors in the acid tolerance of Rhizobium favelukesii using transcriptome sequencing. A total of 1924 genes were differentially expressed under acidic conditions, with ∼60% underexpressed. Rhizobium favelukesii acid response mainly includes changes in the energy metabolism and protein turnover, as well as a combination of mechanisms that may contribute to this phenotype, including GABA and histidine metabolism, cell envelope modifications and reverse proton efflux. We confirmed the acid-sensitive phenotype of a mutant in the braD gene, which showed higher expression under acid stress. Remarkably, 60% of the coding sequences encoded in the symbiotic plasmid were underexpressed and we evidenced that a strain cured for this plasmid featured an improved performance under acidic conditions. Hence, this work provides relevant information in the characterization of genes associated with tolerance or adaptation to acidic stress of R. favelukesii.


Asunto(s)
Rhizobium , Ácidos/toxicidad , Perfilación de la Expresión Génica , Rhizobium/genética , Simbiosis
15.
Biotechnol Biofuels ; 13: 25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32123542

RESUMEN

BACKGROUND: Microorganisms in biogas reactors are essential for degradation of organic matter and methane production. However, a comprehensive genome-centric comparison, including relevant metadata for each sample, is still needed to identify the globally distributed biogas community members and serve as a reliable repository. RESULTS: Here, 134 publicly available metagenomes derived from different biogas reactors were used to recover 1635 metagenome-assembled genomes (MAGs) representing different biogas bacterial and archaeal species. All genomes were estimated to be > 50% complete and nearly half ≥ 90% complete with ≤ 5% contamination. In most samples, specialized microbial communities were established, while only a few taxa were widespread among the different reactor systems. Metabolic reconstruction of the MAGs enabled the prediction of functional traits related to biomass degradation and methane production from waste biomass. An extensive evaluation of the replication index provided an estimation of the growth dynamics for microbes involved in different steps of the food chain. CONCLUSIONS: The outcome of this study highlights a high flexibility of the biogas microbiome, allowing it to modify its composition and to adapt to the environmental conditions, including temperatures and a wide range of substrates. Our findings enhance our mechanistic understanding of the AD microbiome and substantially extend the existing repository of genomes. The established database represents a relevant resource for future studies related to this engineered ecosystem.

16.
Environ Microbiome ; 15(1): 7, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33902713

RESUMEN

BACKGROUND: Anaerobic digestion (AD) of protein-rich grass silage was performed in experimental two-stage two-phase biogas reactor systems at low vs. increased organic loading rates (OLRs) under mesophilic (37 °C) and thermophilic (55 °C) temperatures. To follow the adaptive response of the biomass-attached cellulolytic/hydrolytic biofilms at increasing ammonium/ammonia contents, genome-centered metagenomics and transcriptional profiling based on metagenome assembled genomes (MAGs) were conducted. RESULTS: In total, 78 bacterial and archaeal MAGs representing the most abundant members of the communities, and featuring defined quality criteria were selected and characterized in detail. Determination of MAG abundances under the tested conditions by mapping of the obtained metagenome sequence reads to the MAGs revealed that MAG abundance profiles were mainly shaped by the temperature but also by the OLR. However, the OLR effect was more pronounced for the mesophilic systems as compared to the thermophilic ones. In contrast, metatranscriptome mapping to MAGs subsequently normalized to MAG abundances showed that under thermophilic conditions, MAGs respond to increased OLRs by shifting their transcriptional activities mainly without adjusting their proliferation rates. This is a clear difference compared to the behavior of the microbiome under mesophilic conditions. Here, the response to increased OLRs involved adjusting of proliferation rates and corresponding transcriptional activities. The analysis led to the identification of MAGs positively responding to increased OLRs. The most outstanding MAGs in this regard, obviously well adapted to higher OLRs and/or associated conditions, were assigned to the order Clostridiales (Acetivibrio sp.) for the mesophilic biofilm and the orders Bacteroidales (Prevotella sp. and an unknown species), Lachnospirales (Herbinix sp. and Kineothrix sp.) and Clostridiales (Clostridium sp.) for the thermophilic biofilm. Genome-based metabolic reconstruction and transcriptional profiling revealed that positively responding MAGs mainly are involved in hydrolysis of grass silage, acidogenesis and / or acetogenesis. CONCLUSIONS: An integrated -omics approach enabled the identification of new AD biofilm keystone species featuring outstanding performance under stress conditions such as increased OLRs. Genome-based knowledge on the metabolic potential and transcriptional activity of responsive microbiome members will contribute to the development of improved microbiological AD management strategies for biomethanation of renewable biomass.

17.
Microorganisms ; 8(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861790

RESUMEN

In the thermophilic biogas-producing microbial community, the genus Methanothermobacter was previously described to be frequently abundant. The aim of this study was to establish and analyze the genome sequence of the archaeal strain Methanothermobacter wolfeii SIV6 originating from a thermophilic industrial-scale biogas fermenter and compare it to related reference genomes. The circular chromosome has a size of 1,686,891 bases, featuring a GC content of 48.89%. Comparative analyses considering three completely sequenced Methanothermobacter strains revealed a core genome of 1494 coding sequences and 16 strain specific genes for M. wolfeii SIV6, which include glycosyltransferases and CRISPR/cas associated genes. Moreover, M. wolfeii SIV6 harbors all genes for the hydrogenotrophic methanogenesis pathway and genome-centered metatranscriptomics indicates the high metabolic activity of this strain, with 25.18% of all transcripts per million (TPM) belong to the hydrogenotrophic methanogenesis pathway and 18.02% of these TPM exclusively belonging to the mcr operon. This operon encodes the different subunits of the enzyme methyl-coenzyme M reductase (EC: 2.8.4.1), which catalyzes the final and rate-limiting step during methanogenesis. Finally, fragment recruitment of metagenomic reads from the thermophilic biogas fermenter on the SIV6 genome showed that the strain is abundant (1.2%) within the indigenous microbial community. Detailed analysis of the archaeal isolate M. wolfeii SIV6 indicates its role and function within the microbial community of the thermophilic biogas fermenter, towards a better understanding of the biogas production process and a microbial-based management of this complex process.

18.
Genes (Basel) ; 10(6)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163637

RESUMEN

To follow the hypothesis that agricultural management practices affect structure and function of the soil microbiome regarding soil health and plant-beneficial traits, high-throughput (HT) metagenome analyses were performed on Chernozem soil samples from a long-term field experiment designated LTE-1 carried out at Bernburg-Strenzfeld (Saxony-Anhalt, Germany). Metagenomic DNA was extracted from soil samples representing the following treatments: (i) plough tillage with standard nitrogen fertilization and use of fungicides and growth regulators, (ii) plough tillage with reduced nitrogen fertilization (50%), (iii) cultivator tillage with standard nitrogen fertilization and use of fungicides and growth regulators, and (iv) cultivator tillage with reduced nitrogen fertilization (50%). Bulk soil (BS), as well as root-affected soil (RS), were considered for all treatments in replicates. HT-sequencing of metagenomic DNA yielded approx. 100 Giga bases (Gb) of sequence information. Taxonomic profiling of soil communities revealed the presence of 70 phyla, whereby Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Thaumarchaeota, Firmicutes, Verrucomicrobia and Chloroflexi feature abundances of more than 1%. Functional microbiome profiling uncovered, i.a., numerous potential plant-beneficial, plant-growth-promoting and biocontrol traits predicted to be involved in nutrient provision, phytohormone synthesis, antagonism against pathogens and signal molecule synthesis relevant in microbe-plant interaction. Neither taxonomic nor functional microbiome profiling based on single-read analyses revealed pronounced differences regarding the farming practices applied. Soil metagenome sequences were assembled and taxonomically binned. The ten most reliable and abundant Metagenomically Assembled Genomes (MAGs) were taxonomically classified and metabolically reconstructed. Importance of the phylum Thaumarchaeota for the analyzed microbiome is corroborated by the fact that the four corresponding MAGs were predicted to oxidize ammonia (nitrification), thus contributing to the cycling of nitrogen, and in addition are most probably able to fix carbon dioxide. Moreover, Thaumarchaeota and several bacterial MAGs also possess genes with predicted functions in plant-growth-promotion. Abundances of certain MAGs (species resolution level) responded to the tillage practice, whereas the factors compartment (BS vs. RS) and nitrogen fertilization only marginally shaped MAG abundance profiles. Hence, soil management regimes promoting plant-beneficial microbiome members are very likely advantageous for the respective agrosystem, its health and carbon sequestration and accordingly may enhance plant productivity. Since Chernozem soils are highly fertile, corresponding microbiome data represent a valuable reference resource for agronomy in general.


Asunto(s)
Agricultura , Bacterias/genética , Metagenoma/genética , Microbiología del Suelo , Actinobacteria/clasificación , Actinobacteria/genética , Amoníaco/metabolismo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Alemania , Humanos , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética
19.
Sci Rep ; 9(1): 7221, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076623

RESUMEN

The leafy green vegetable Lactuca sativa, L. is susceptible to the soil-born fungus Rhizoctonia solani AG1-IB. In a previous study, we reported on the transcriptional response of R. solani AG1-IB (isolate 7/3/14) during the interspecies interaction with L. sativa cv. Tizian by means of RNA sequencing. Here we present the L. sativa transcriptome and metabolome from the same experimental approach. Three distinct interaction zones were sampled and compared to a blank (non-inoculated) sample: symptomless zone 1, zone 2 showing light brown discoloration, and a dark brown zone 3 characterized by necrotic lesions. Throughout the interaction, we observed a massive reprogramming of the L. sativa transcriptome, with 9231 unique genes matching the threshold criteria for differential expression. The lettuce transcriptome of the light brown zone 2 presents the most dissimilar profile compared to the uninoculated zone 4, marking the main stage of interaction. Transcripts putatively encoding several essential proteins that are involved in maintaining jasmonic acid and auxin homeostasis were found to be negatively regulated. These and other indicator transcripts mark a potentially inadequate defence response, leading to a compatible interaction. KEGG pathway mapping and GC-MS metabolome data revealed large changes in amino acid, lignin and hemicellulose related pathways and related metabolites.


Asunto(s)
Lactuca/genética , Rhizoctonia/fisiología , Transcriptoma , Señalización del Calcio/genética , Lactuca/metabolismo , Lactuca/microbiología , Metaboloma , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Plasmid ; 103: 9-16, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30928704

RESUMEN

Plasmids are widely distributed in rhizobia, a group of bacteria able to establish symbiotic relationships with the roots of legume plants. Two types of conjugative transfer (CT) regulation of these elements have been described in more detail. The most prevalent is through Quorum-Sensing (QS), mediated by the interaction of the TraR regulator protein and its cognate acyl-homoserine lactone (AHL) synthesized by TraI. In this study, we analyzed rhizobial plasmids classified according to their TraR regulators into four different groups. Each group has a particular genomic architecture. In one of the groups (I-C), represented by pLPU83a from Rhizobium favelukesii LPU83, CT induction requires TraR. With manual annotation, a traI was located in the plasmid distant to the traR gene. These features make pLPU83a an interesting plasmid for studying novel mechanisms of CT regulation. We mutagenized the traI gene, and found that it does not participate in CT regulation. Furthermore, we studied whether pLPU83a is subject to QS regulation by determining CT at different growth stages (cell densities). Our results showed no positive correlation between increase in culture densities and CT induction, on the contrary a slight decrease in CT was found at higher culture densities, unlike other TraR-depending plasmids. Our results show that transfer of pLPU83a is not regulated in a QS-dependent manner, and suggest that molecules not yet identified may activate its CT. Also, accumulation of a putative inhibitor cannot be disregarded.


Asunto(s)
Agrobacterium tumefaciens/genética , Conjugación Genética , Plásmidos/química , Percepción de Quorum/genética , Rhizobium/genética , Acil-Butirolactonas/metabolismo , Agrobacterium tumefaciens/metabolismo , Carga Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fabaceae/microbiología , Anotación de Secuencia Molecular , Filogenia , Raíces de Plantas/microbiología , Plásmidos/clasificación , Plásmidos/metabolismo , Rhizobium/metabolismo , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA