Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Epigenetics ; 19(1): 2346694, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38739481

RESUMEN

The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.


Asunto(s)
Blastocisto , Epigénesis Genética , MicroARNs , Espermatozoides , Estrés Psicológico , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Animales , Espermatozoides/metabolismo , Femenino , Ratones , Blastocisto/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/genética , Humanos , Ratones Endogámicos C57BL
2.
Nature ; 627(8004): 594-603, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383780

RESUMEN

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Asunto(s)
Cognición , Embrión de Mamíferos , Desarrollo Embrionario , Histona Demetilasas , Vía de Señalización Wnt , Animales , Humanos , Ratones , Ansiedad , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidad Intelectual/genética , Memoria , Ratones Noqueados , Mutación , Neurogénesis/genética , Vía de Señalización Wnt/efectos de los fármacos
3.
Nat Commun ; 15(1): 1274, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341433

RESUMEN

Although emerging evidence indicates that alterations in proteins within nuclear compartments elicit changes in chromosomal architecture and differentiation, the underlying mechanisms are not well understood. Here we investigate the direct role of the abundant nuclear complex protein Matrin3 (Matr3) in chromatin architecture and development in the context of myogenesis. Using an acute targeted protein degradation platform (dTAG-Matr3), we reveal the dynamics of development-related chromatin reorganization. High-throughput chromosome conformation capture (Hi-C) experiments revealed substantial chromatin loop rearrangements soon after Matr3 depletion. Notably, YY1 binding was detected, accompanied by the emergence of novel YY1-mediated enhancer-promoter loops, which occurred concurrently with changes in histone modifications and chromatin-level binding patterns. Changes in chromatin occupancy by Matr3 also correlated with these alterations. Overall, our results suggest that Matr3 mediates differentiation through stabilizing chromatin accessibility and chromatin loop-domain interactions, and highlight a conserved and direct role for Matr3 in maintenance of chromosomal architecture.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Proteínas Asociadas a Matriz Nuclear , Proteínas de Unión al ARN , Núcleo Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas , Regiones Promotoras Genéticas/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo
4.
NPJ Syst Biol Appl ; 10(1): 3, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184707

RESUMEN

Experimental studies have shown that chromatin modifiers have a critical effect on cellular reprogramming, i.e., the conversion of differentiated cells to pluripotent stem cells. Here, we develop a model of the OCT4 gene regulatory network that includes genes expressing chromatin modifiers TET1 and JMJD2, and the chromatin modification circuit on which these modifiers act. We employ this model to compare three reprogramming approaches that have been considered in the literature with respect to reprogramming efficiency and latency variability. These approaches are overexpression of OCT4 alone, overexpression of OCT4 with TET1, and overexpression of OCT4 with JMJD2. Our results show more efficient and less variable reprogramming when also JMJD2 and TET1 are overexpressed, consistent with previous experimental data. Nevertheless, TET1 overexpression can lead to more efficient reprogramming compared to JMJD2 overexpression. This is the case when the recruitment of DNA methylation by H3K9me3 is weak and the methyl-CpG-binding domain (MBD) proteins are sufficiently scarce such that they do not hamper TET1 binding to methylated DNA. The model that we developed provides a mechanistic understanding of existing experimental results and is also a tool for designing optimized reprogramming approaches that combine overexpression of cell-fate specific transcription factors (TFs) with targeted recruitment of epigenetic modifiers.


Asunto(s)
Reprogramación Celular , Redes Reguladoras de Genes , Reprogramación Celular/genética , Diferenciación Celular/genética , Redes Reguladoras de Genes/genética , Cromatina , Epigénesis Genética/genética
5.
Sci Adv ; 9(48): eadg8495, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019912

RESUMEN

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. We develop a system that accurately reports OCT4 protein levels in live cells and use it to reveal the trajectories of OCT4 in successful reprogramming. Our system comprises a synthetic genetic circuit that leverages noise to generate a wide range of OCT4 trajectories and a microRNA targeting endogenous OCT4 to set total cellular OCT4 protein levels. By fusing OCT4 to a fluorescent protein, we are able to track OCT4 trajectories with clonal resolution via live-cell imaging. We discover that a supraphysiological, stable OCT4 level is required, but not sufficient, for efficient iPSC colony formation. Our synthetic genetic circuit design and high-throughput live-imaging pipeline are generalizable for investigating TF dynamics for other cell fate programming applications.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/genética , Células Cultivadas , Reprogramación Celular/genética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37786715

RESUMEN

Chronically stressing male mice can alter the behavior of their offspring across generations. This effect is thought to be mediated by stress-induced changes in the content of specific sperm miRNAs that modify embryo development after their delivery to oocytes at fertilization. A major problem with this hypothesis is that the levels of mouse sperm miRNAs are much lower than those present in preimplantation embryos. This makes it unclear how embryos could be significantly impacted without an amplification system to magnify changes in sperm miRNA content, like those present in lower organisms where transgenerational epigenetic inheritance is well established. Here, we describe such a system for Chronic Social Instability (CSI) stress that can explain how it reduces the levels of the miR-34b,c/449a,b family of miRNAs not only in sperm of exposed males but also in preimplantation embryos ( PIEs ) derived from their mating, as well as in sperm of male offspring. Sperm-derived miR-34c normally positively regulates expression of its own gene and that of miR-449 in PIEs. This feed forward, auto-amplification process is suppressed when CSI stress reduces sperm miR-34c levels. Its suppression is important for the transmission of traits to offspring because restoring miR-34c levels in PIEs from CSI stressed males, which also restores levels of miR-449 in them, suppresses elements of elevated anxiety and defective sociability normally found specifically in their female offspring, as well as reduced sperm miR-34 and miR-449 levels normally found in male offspring, who pass on these traits to their offspring. We previously published that the content of sperm miR-34/449 is also reduced in men raised in highly abusive and/or dysfunctional families. We show here that a similar miRNA auto-amplification system functions in human embryonic stem cells. This raises the possibility that PIEs in offspring of these men also display reduced levels of miR-34/449, enhancing the potential translational significance of these studies.

7.
Theranostics ; 13(11): 3707-3724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441602

RESUMEN

Background: Extracellular vesicles (EVs) carry bioactive molecules associated with various biological processes, including miRNAs. In both Huntington's disease (HD) models and human samples, altered expression of miRNAs involved in synapse regulation was reported. Recently, the use of EV cargo to reverse phenotypic alterations in disease models with synaptopathy as the end result of the pathophysiological cascade has become an interesting possibility. Methods: Here, we assessed the contribution of EVs to GABAergic synaptic alterations using a human HD model and studied the miRNA content of isolated EVs. Results: After differentiating human induced pluripotent stem cells into electrophysiologically active striatal-like GABAergic neurons, we found that HD-derived neurons displayed reduced density of inhibitory synapse markers and GABA receptor-mediated ionotropic signaling. Treatment with EVs secreted by control (CTR) fibroblasts reversed the deficits in GABAergic synaptic transmission and increased the density of inhibitory synapses in HD-derived neuron cultures, while EVs from HD-derived fibroblasts had the opposite effects on CTR-derived neurons. Moreover, analysis of miRNAs from purified EVs identified a set of differentially expressed miRNAs between manifest HD, premanifest, and CTR lines with predicted synaptic targets. Conclusion: The EV-mediated reversal of the abnormal GABAergic phenotype in HD-derived neurons reinforces the potential role of EV-miRNAs on synapse regulation.


Asunto(s)
Vesículas Extracelulares , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Neuronas GABAérgicas/metabolismo , Vesículas Extracelulares/metabolismo
8.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747813

RESUMEN

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. Here, we identify the successful reprogramming trajectories of the core pluripotency TF, OCT4, and design a genetic controller that enforces such trajectories with high precision. By combining a genetic circuit that generates a wide range of OCT4 trajectories with live-cell imaging, we track OCT4 trajectories with clonal resolution and find that a distinct constant OCT4 trajectory is required for colony formation. We then develop a synthetic genetic circuit that yields a tight OCT4 distribution around the identified trajectory and outperforms in terms of reprogramming efficiency other circuits that less accurately regulate OCT4. Our synthetic biology approach is generalizable for identifying and enforcing TF dynamics for cell fate programming applications.

9.
Cell Stem Cell ; 29(8): 1181-1196.e6, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931029

RESUMEN

Human induced pluripotent stem cells (iPSCs) provide a potentially unlimited resource for cell therapies, but the derivation of mature cell types remains challenging. The histone methyltransferase EZH1 is a negative regulator of lymphoid potential during embryonic hematopoiesis. Here, we demonstrate that EZH1 repression facilitates in vitro differentiation and maturation of T cells from iPSCs. Coupling a stroma-free T cell differentiation system with EZH1-knockdown-mediated epigenetic reprogramming, we generated iPSC-derived T cells, termed EZ-T cells, which display a highly diverse T cell receptor (TCR) repertoire and mature molecular signatures similar to those of TCRαß T cells from peripheral blood. Upon activation, EZ-T cells give rise to effector and memory T cell subsets. When transduced with chimeric antigen receptors (CARs), EZ-T cells exhibit potent antitumor activities in vitro and in xenograft models. Epigenetic remodeling via EZH1 repression allows efficient production of developmentally mature T cells from iPSCs for applications in adoptive cell therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Receptores Quiméricos de Antígenos , Diferenciación Celular , Humanos , Inmunoterapia Adoptiva , Células Madre Pluripotentes Inducidas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T
10.
Nat Commun ; 12(1): 3626, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131117

RESUMEN

Platelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.


Asunto(s)
Plaquetas/metabolismo , Mapeo Cromosómico , Secuenciación Completa del Genoma , Secuencia de Bases , Proteínas de Unión al GTP , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Células K562 , Fenotipo , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores de Superficie Celular/genética , Trombosis/genética
11.
Genet Med ; 23(6): 1158-1162, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33531666

RESUMEN

PURPOSE: The endoplasmic reticulum membrane complex (EMC) is a highly conserved, multifunctional 10-protein complex related to membrane protein biology. In seven families, we identified 13 individuals with highly overlapping phenotypes who harbor a single identical homozygous frameshift variant in EMC10. METHODS: Using exome, genome, and Sanger sequencing, a recurrent frameshift EMC10 variant was identified in affected individuals in an international cohort of consanguineous families. Multiple families were independently identified and connected via Matchmaker Exchange and internal databases. We assessed the effect of the frameshift variant on EMC10 RNA and protein expression and evaluated EMC10 expression in normal human brain tissue using immunohistochemistry. RESULTS: A homozygous variant EMC10 c.287delG (Refseq NM_206538.3, p.Gly96Alafs*9) segregated with affected individuals in each family, who exhibited a phenotypic spectrum of intellectual disability (ID) and global developmental delay (GDD), variable seizures and variable dysmorphic features (elongated face, curly hair, cubitus valgus, and arachnodactyly). The variant arose on two founder haplotypes and results in significantly reduced EMC10 RNA expression and an unstable truncated EMC10 protein. CONCLUSION: We propose that a homozygous loss-of-function variant in EMC10 causes a novel syndromic neurodevelopmental phenotype. Remarkably, the recurrent variant is likely the result of a hypermutable site and arose on distinct founder haplotypes.


Asunto(s)
Discapacidades del Desarrollo , Discapacidad Intelectual , Niño , Discapacidades del Desarrollo/genética , Mutación del Sistema de Lectura , Homocigoto , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Linaje , Fenotipo , Convulsiones/genética
12.
Cell Stem Cell ; 28(1): 79-95.e8, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33098807

RESUMEN

The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1GFP;TP63tdTomato), we track and purify these cells as they first emerge as developmentally immature NKX2-1GFP+ lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning. In response to primary basal cell medium, NKX2-1GFP+/TP63tdTomato+ cells display the molecular and functional phenotype of airway basal cells, including the capacity to self-renew or undergo multi-lineage differentiation in vitro and in tracheal xenografts in vivo. iBCs and their differentiated progeny model perturbations that characterize acquired and genetic airway diseases, including the mucus metaplasia of asthma, chloride channel dysfunction of cystic fibrosis, and ciliary defects of primary ciliary dyskinesia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Células Epiteliales , Humanos , Pulmón , Tráquea
13.
Blood Adv ; 4(19): 4679-4692, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33002135

RESUMEN

Fanconi anemia (FA) is a disorder of DNA repair that manifests as bone marrow (BM) failure. The lack of accurate murine models of FA has refocused efforts toward differentiation of patient-derived induced pluripotent stem cells (IPSCs) to hematopoietic progenitor cells (HPCs). However, an intact FA DNA repair pathway is required for efficient IPSC derivation, hindering these efforts. To overcome this barrier, we used inducible complementation of FANCA-deficient IPSCs, which permitted robust maintenance of IPSCs. Modulation of FANCA during directed differentiation to HPCs enabled the production of FANCA-deficient human HPCs that recapitulated FA genotoxicity and hematopoietic phenotypes relative to isogenic FANCA-expressing HPCs. FANCA-deficient human HPCs underwent accelerated terminal differentiation driven by activation of p53/p21. We identified growth arrest specific 6 (GAS6) as a novel target of activated p53 in FANCA-deficient HPCs and modulate GAS6 signaling to rescue hematopoiesis in FANCA-deficient cells. This study validates our strategy to derive a sustainable, highly faithful human model of FA, uncovers a mechanism of HPC exhaustion in FA, and advances toward future cell therapy in FA.


Asunto(s)
Anemia de Fanconi , Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Humanos , Ratones , Proteína p53 Supresora de Tumor/genética
14.
Front Cell Dev Biol ; 8: 576592, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072759

RESUMEN

Mitochondrial deregulation has gained increasing support as a pathological mechanism in Huntington's disease (HD), a genetic-based neurodegenerative disorder caused by CAG expansion in the HTT gene. In this study, we thoroughly investigated mitochondrial-based mechanisms in HD patient-derived iPSC (HD-iPSC) and differentiated neural stem cells (NSC) versus control cells, as well as in cells subjected to CRISPR/Cas9-CAG repeat deletion. We analyzed mitochondrial morphology, function and biogenesis, linked to exosomal release of mitochondrial components, glycolytic flux, ATP generation and cellular redox status. Mitochondria in HD cells exhibited round shape and fragmented morphology. Functionally, HD-iPSC and HD-NSC displayed lower mitochondrial respiration, exosomal release of cytochrome c, decreased ATP/ADP, reduced PGC-1α and complex III subunit expression and activity, and were highly dependent on glycolysis, supported by pyruvate dehydrogenase (PDH) inactivation. HD-iPSC and HD-NSC mitochondria showed ATP synthase reversal and increased calcium retention. Enhanced mitochondrial reactive oxygen species (ROS) were also observed in HD-iPSC and HD-NSC, along with decreased UCP2 mRNA levels. CRISPR/Cas9-CAG repeat deletion in HD-iPSC and derived HD-NSC ameliorated mitochondrial phenotypes. Data attests for intricate metabolic and mitochondrial dysfunction linked to transcriptional deregulation as early events in HD pathogenesis, which are alleviated following CAG deletion.

15.
Stem Cell Reports ; 14(5): 956-971, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32302558

RESUMEN

Studies of hematopoietic stem cell (HSC) development from pre-HSC-producing hemogenic endothelial cells (HECs) are hampered by the rarity of these cells and the presence of other cell types with overlapping marker expression profiles. We generated a Tg(Runx1-mKO2; Ly6a-GFP) dual reporter mouse to visualize hematopoietic commitment and study pre-HSC emergence and maturation. Runx1-mKO2 marked all intra-arterial HECs and hematopoietic cluster cells (HCCs), including pre-HSCs, myeloid- and lymphoid progenitors, and HSCs themselves. However, HSC and lymphoid potential were almost exclusively found in reporter double-positive (DP) cells. Robust HSC activity was first detected in DP cells of the placenta, reflecting the importance of this niche for (pre-)HSC maturation and expansion before the fetal liver stage. A time course analysis by single-cell RNA sequencing revealed that as pre-HSCs mature into fetal liver stage HSCs, they show signs of interferon exposure, exhibit signatures of multi-lineage differentiation gene expression, and develop a prolonged cell cycle reminiscent of quiescent adult HSCs.


Asunto(s)
Antígenos Ly/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Genes Reporteros , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana/genética , Transcriptoma , Animales , Antígenos Ly/metabolismo , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de la Membrana/metabolismo , Ratones , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual
16.
Curr Protoc Stem Cell Biol ; 52(1): e103, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31977148

RESUMEN

Translating human induced pluripotent stem cell (hiPSC)-derived cells and tissues into the clinic requires streamlined and reliable production of clinical-grade hiPSCs. This article describes an entirely animal component-free procedure for the reliable derivation of stable hiPSC lines from donor peripheral blood mononuclear cells (PBMCs) using only autologous patient materials and xeno-free reagents. PBMCs are isolated from a whole blood donation, from which a small amount of patient serum is also generated. The PBMCs are then expanded prior to reprogramming in an animal component-free erythroblast growth medium supplemented with autologous patient serum, thereby eliminating the need for animal serum. After expansion, the erythroblasts are reprogrammed using either cGMP-grade Sendai viral particles (CytoTune™ 2.1 kit) or episomally replicating reprogramming plasmids (Epi5™ kit), both commercially available. Expansion of emerging hiPSCs on a recombinant cGMP-grade human laminin substrate is compatible with a number of xeno-free or chemically defined media (some available as cGMP-grade reagents), such as E8, Nutristem, Stemfit, or mTeSR Plus. hiPSC lines derived using this method display expression of expected surface markers and transcription factors, loss of the reprogramming agent-derived nucleic acids, genetic stability, and the ability to robustly differentiate in vitro to multiple lineages. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Isolating peripheral blood mononuclear cells using CPT tubes Support Protocol 1: Removal of clotting factors to produce serum from autologous plasma collected in Basic Protocol 1 Basic Protocol 2: PBMC expansion in an animal-free erythroblast expansion medium containing autologous serum Basic Protocol 3: Reprogramming of expanded PBMCs with Sendai viral reprogramming particles Alternate Protocol: Reprogramming of expanded PBMCs with episomal plasmids Basic Protocol 4: Picking, expanding, and cryopreserving hiPSC clones Support Protocol 2: Testing Sendai virus kit-reprogrammed hiPSC for absence of Sendai viral RNA Support Protocol 3: Testing Epi5 kit-reprogrammed hiPSC for absence of episomal plasmid DNA Support Protocol 4: Assessing the undifferentiated state of human pluripotent stem cell cultures by multi-color immunofluorescent staining and confocal imaging Support Protocol 5: Coating plates with extracellular matrices to support hiPSC attachment and expansion.


Asunto(s)
Reprogramación Celular , Eritrocitos/citología , Laminina/farmacología , Leucocitos Mononucleares/citología , Diferenciación Celular , Proliferación Celular , Reprogramación Celular/efectos de los fármacos , Células Clonales , Criopreservación , Eritrocitos/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Leucocitos Mononucleares/efectos de los fármacos , Plásmidos/metabolismo , ARN Viral/metabolismo , Virus Sendai/genética , Virus Sendai/fisiología , Suero
17.
Stem Cell Reports ; 13(5): 906-923, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31668851

RESUMEN

X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model.


Asunto(s)
Organoides/patología , Retina/patología , Retinosquisis/patología , Células Cultivadas , Proteínas del Ojo/genética , Edición Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Organoides/metabolismo , Mutación Puntual , Retina/metabolismo , Retinosquisis/genética , Retinosquisis/terapia
19.
SLAS Discov ; 24(8): 829-841, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31284814

RESUMEN

The etiological underpinnings of many CNS disorders are not well understood. This is likely due to the fact that individual diseases aggregate numerous pathological subtypes, each associated with a complex landscape of genetic risk factors. To overcome these challenges, researchers are integrating novel data types from numerous patients, including imaging studies capturing broadly applicable features from patient-derived materials. These datasets, when combined with machine learning, potentially hold the power to elucidate the subtle patterns that stratify patients by shared pathology. In this study, we interrogated whether high-content imaging of primary skin fibroblasts, using the Cell Painting method, could reveal disease-relevant information among patients. First, we showed that technical features such as batch/plate type, plate, and location within a plate lead to detectable nuisance signals, as revealed by a pre-trained deep neural network and analysis with deep image embeddings. Using a plate design and image acquisition strategy that accounts for these variables, we performed a pilot study with 12 healthy controls and 12 subjects affected by the severe genetic neurological disorder spinal muscular atrophy (SMA), and evaluated whether a convolutional neural network (CNN) generated using a subset of the cells could distinguish disease states on cells from the remaining unseen control-SMA pair. Our results indicate that these two populations could effectively be differentiated from one another and that model selectivity is insensitive to batch/plate type. One caveat is that the samples were also largely separated by source. These findings lay a foundation for how to conduct future studies exploring diseases with more complex genetic contributions and unknown subtypes.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Aprendizaje Automático , Imagen Molecular , Redes Neurales de la Computación , Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador
20.
Dev Cell ; 48(3): 396-405.e3, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30661985

RESUMEN

The heterochronic genes Lin28a/b and let-7 regulate invertebrate development, but their functions in patterning the mammalian body plan remain unexplored. Here, we describe how Lin28/let-7 influence caudal vertebrae number during body axis formation. We found that FoxD1-driven overexpression of Lin28a strikingly increased caudal vertebrae number and tail bud cell proliferation, whereas its knockout did the opposite. Lin28a overexpression downregulated the neural marker Sox2, causing a pro-mesodermal phenotype with a decreased proportion of neural tissue relative to nascent mesoderm. Manipulating Lin28a and let-7 led to opposite effects, and manipulating Lin28a's paralog, LIN28B caused similar yet distinct phenotypes. These findings suggest that Lin28/let-7 play a role in the regulation of tail length through heterochrony of the body plan. We propose that the Lin28/let-7 pathway controls the pool of caudal progenitors during tail development, promoting their self-renewal and balancing neural versus mesodermal cell fate decisions.


Asunto(s)
MicroARNs/metabolismo , Morfogénesis/fisiología , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Mamíferos/metabolismo , Ratones Transgénicos , MicroARNs/genética , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA