Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 29(6): 729-39, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24960695

RESUMEN

Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription.


Asunto(s)
Acetiltransferasas/metabolismo , Ácidos Grasos/metabolismo , Regulación Fúngica de la Expresión Génica , Lípidos de la Membrana/metabolismo , Mio-Inositol-1-Fosfato Sintasa/genética , Fosfolípidos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetiltransferasas/genética , Retículo Endoplásmico/metabolismo , Mutación/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell Calcium ; 54(3): 175-85, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23800762

RESUMEN

Utilizing a novel molecular model of TRPC3, based on the voltage-gated sodium channel from Arcobacter butzleri (Na(V)AB) as template, we performed structure-guided mutagenesis experiments to identify amino acid residues involved in divalent permeation and gating. Substituted cysteine accessibility screening within the predicted selectivity filter uncovered amino acids 629-631 as the narrowest part of the permeation pathway with an estimated pore diameter of < 5.8Å. E630 was found to govern not only divalent permeability but also sensitivity of the channel to block by ruthenium red. Mutations in a hydrophobic cluster at the cytosolic termini of transmembrane segment 6, corresponding to the S6 bundle crossing structure in Na(V)AB, distorted channel gating. Removal of a large hydrophobic residue (I667A or I667E) generated channels with approximately 60% constitutive activity, suggesting I667 as part of the dynamic structure occluding the permeation path. Destabilization of the gate was associated with reduced Ca2+ permeability, altered cysteine cross-linking in the selectivity filter and promoted channel block by ruthenium red. Collectively, we present a structural model of the TRPC3 permeation pathway and localize the channel's selectivity filter and the occluding gate. Moreover, we provide evidence for allosteric coupling between the gate and the selectivity filter in TRPC3.


Asunto(s)
Modelos Moleculares , Canales Catiónicos TRPC/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Arcobacter/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Rojo de Rutenio/farmacología , Electricidad Estática , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética
3.
Proc Natl Acad Sci U S A ; 108(26): 10556-61, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21653882

RESUMEN

Cardiac transient receptor potential canonical (TRPC) channels are crucial upstream components of Ca(2+)/calcineurin/nuclear factor of activated T cells (NFAT) signaling, thereby controlling cardiac transcriptional programs. The linkage between TRPC-mediated Ca(2+) signals and NFAT activity is still incompletely understood. TRPC conductances may govern calcineurin activity and NFAT translocation by supplying Ca(2+) either directly through the TRPC pore into a regulatory microdomain or indirectly via promotion of voltage-dependent Ca(2+) entry. Here, we show that a point mutation in the TRPC3 selectivity filter (E630Q), which disrupts Ca(2+) permeability but preserves monovalent permeation, abrogates agonist-induced NFAT signaling in HEK293 cells as well as in murine HL-1 atrial myocytes. The E630Q mutation fully retains the ability to convert phospholipase C-linked stimuli into L-type (Ca(V)1.2) channel-mediated Ca(2+) entry in HL-1 cells, thereby generating a dihydropyridine-sensitive Ca(2+) signal that is isolated from the NFAT pathway. Prevention of PKC-dependent modulation of TRPC3 by either inhibition of cellular kinase activity or mutation of a critical phosphorylation site in TRPC3 (T573A), which disrupts targeting of calcineurin into the channel complex, converts cardiac TRPC3-mediated Ca(2+) signaling into a transcriptionally silent mode. Thus, we demonstrate a dichotomy of TRPC-mediated Ca(2+) signaling in the heart constituting two distinct pathways that are differentially linked to gene transcription. Coupling of TRPC3 activity to NFAT translocation requires microdomain Ca(2+) signaling by PKC-modified TRPC3 complexes. Our results identify TRPC3 as a pivotal signaling gateway in Ca(2+)-dependent control of cardiac gene expression.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/metabolismo , Animales , Línea Celular , Humanos , Transporte Iónico , Ratones , Miocardio/citología , Miocardio/enzimología , Factores de Transcripción NFATC/metabolismo , Fosforilación
4.
J Biol Chem ; 285(6): 4213-4223, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19996314

RESUMEN

TRPC4 is well recognized as a prominent cation channel in the vascular endothelium, but its contribution to agonist-induced endothelial Ca(2+) entry is still a matter of controversy. Here we report that the cellular targeting and Ca(2+) signaling function of TRPC4 is determined by the state of cell-cell adhesions during endothelial phenotype transitions. TRPC4 surface expression in human microvascular endothelial cells (HMEC-1) increased with the formation of cell-cell contacts. Epidermal growth factor recruited TRPC4 into the plasma membrane of proliferating cells but initiated retrieval of TRPC4 from the plasma membrane in quiescent, barrier-forming cells. Epidermal growth factor-induced Ca(2+) entry was strongly promoted by the formation of cell-cell contacts, and both siRNA and dominant negative knockdown experiments revealed that TRPC4 mediates stimulated Ca(2+) entry exclusively in proliferating clusters that form immature cell-cell contacts. TRPC4 co-precipitated with the junctional proteins beta-catenin and VE-cadherin. Analysis of cellular localization of fluorescent fusion proteins provided further evidence for recruitment of TRPC4 into junctional complexes. Analysis of TRPC4 function in the HEK293 expression system identified beta-catenin as a signaling molecule that enables cell-cell contact-dependent promotion of TRPC4 function. Our results place TRPC4 as a Ca(2+) entry channel that is regulated by cell-cell contact formation and interaction with beta-catenin. TRPC4 is suggested to serve stimulated Ca(2+) entry in a specific endothelial state during the transition from a proliferating to a quiescent phenotype. Thus, TRPC4 may adopt divergent, as yet unappreciated functions in endothelial Ca(2+) homeostasis and emerges as a potential key player in endothelial phenotype switching and tuning of cellular growth factor signaling.


Asunto(s)
Calcio/metabolismo , Comunicación Celular/fisiología , Endotelio Vascular/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/metabolismo , Antígenos CD/metabolismo , Western Blotting , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inmunoprecipitación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Unión Proteica , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales Catiónicos TRPC/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...