Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7908, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256401

RESUMEN

Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, a fatal neurologic disorder of domestic mammals and humans, resulting from spill-over infection from its natural reservoir host, the bicolored white-toothed shrew (Crocidura leucodon). The known BoDV-1-endemic area is remarkably restricted to parts of Germany, Austria, Switzerland and Liechtenstein. To gain comprehensive data on its occurrence, we analysed diagnostic material from suspected BoDV-1-induced encephalitis cases based on clinical and/or histopathological diagnosis. BoDV-1 infection was confirmed by RT-qPCR in 207 domestic mammals, 28 humans and seven wild shrews. Thereby, this study markedly raises the number of published laboratory-confirmed human BoDV-1 infections and provides a first comprehensive summary. Generation of 136 new BoDV-1 genome sequences from animals and humans facilitated an in-depth phylogeographic analysis, allowing for the definition of risk areas for zoonotic BoDV-1 transmission and facilitating the assessment of geographical infection sources. Consistent with the low mobility of its reservoir host, BoDV-1 sequences showed a remarkable geographic association, with individual phylogenetic clades occupying distinct areas. The closest genetic relatives of most human-derived BoDV-1 sequences were located at distances of less than 40 km, indicating that spill-over transmission from the natural reservoir usually occurs in the patient´s home region.


Asunto(s)
Enfermedad de Borna , Virus de la Enfermedad de Borna , Epidemiología Molecular , Filogenia , Filogeografía , Musarañas , Animales , Virus de la Enfermedad de Borna/genética , Virus de la Enfermedad de Borna/fisiología , Humanos , Enfermedad de Borna/epidemiología , Enfermedad de Borna/virología , Musarañas/virología , Femenino , Masculino , Alemania/epidemiología , Reservorios de Enfermedades/virología , Genoma Viral/genética , Austria/epidemiología , Zoonosis/epidemiología , Zoonosis/virología , Zoonosis/transmisión , Suiza/epidemiología , Adulto , Persona de Mediana Edad
2.
Viruses ; 16(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39205206

RESUMEN

Here, we report the results of a monitoring study of bat viruses in Austria to strengthen the knowledge of circulating viruses in Austrian bat populations. In this study, we analyzed 618 oropharyngeal and rectal swab samples from 309 bats and 155 pooled tissue samples from dead bats. Samples were collected from 18 different bat species from multiple locations in Austria, from November 2015 to April 2018, and examined for astroviruses, bornaviruses, coronaviruses, hantaviruses, morbilliviruses, orthomyxoviruses (influenza A/C/D viruses), pestiviruses and rhabdoviruses (lyssaviruses) using molecular techniques and sequencing. Using RT-qPCR, 36 samples revealed positive or suspicious results for astroviruses, Brno-hantaviruses, and coronaviruses in nine different bat species. Further sequencing revealed correspondent sequences in five samples. In contrast, none of the tested samples was positive for influenza viruses A/C/D, bornaviruses, morbilliviruses, lyssaviruses, or pestiviruses.


Asunto(s)
Quirópteros , Animales , Quirópteros/virología , Austria , Pestivirus/genética , Pestivirus/clasificación , Pestivirus/aislamiento & purificación , Filogenia , Astroviridae/genética , Astroviridae/aislamiento & purificación , Astroviridae/clasificación , Coronavirus/genética , Coronavirus/clasificación , Coronavirus/aislamiento & purificación , Lyssavirus/clasificación , Lyssavirus/genética , Lyssavirus/aislamiento & purificación , Morbillivirus/genética , Morbillivirus/clasificación , Morbillivirus/aislamiento & purificación , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , Virosis/virología , Virosis/veterinaria
3.
Nat Microbiol ; 9(8): 2099-2112, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38997518

RESUMEN

Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Genoma Viral , SARS-CoV-2 , Vacunas Atenuadas , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/administración & dosificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Animales , Genoma Viral/genética , Humanos , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Chlorocebus aethiops , Modelos Animales de Enfermedad , Células Vero , Anticuerpos Neutralizantes/inmunología
4.
Nat Commun ; 14(1): 816, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781853

RESUMEN

Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS-CoV-2 variants could improve control of the COVID-19 pandemic. We compare monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S-protein in a transgenic mouse and a Wistar rat model. The blended low-dose bivalent mRNA vaccine contains half the mRNA of each respective monovalent vaccine, but induces comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, antigen-specific CD4+ and CD8+ responses, and protects transgenic female mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduces viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized female Wistar rats also contain neutralizing antibodies against the B.1.1.529 (Omicron BA.1 and BA.5) variants. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins are feasible approaches for extending the coverage of vaccines for emerging and co-circulating SARS-CoV-2 variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Animales , Femenino , Ratones , Ratas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Ratones Transgénicos , Modelos Animales , Vacunas de ARNm/inmunología , Ratas Wistar , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Combinadas/inmunología
5.
Virus Genes ; 59(2): 323-332, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36542315

RESUMEN

Bat-associated hantaviruses have been detected in Asia, Africa and Europe. Recently, a novel hantavirus (Brno loanvirus, BRNV) was identified in common noctule bats (Nyctalus noctula) in the Czech Republic, but nothing is known about its geographical range and prevalence. The objective of this study was to evaluate the distribution and host specificity of BRNV by testing bats from neighbouring countries Germany, Austria and Poland. One thousand forty-seven bats representing 21 species from Germany, 464 bats representing 18 species from Austria and 77 bats representing 12 species from Poland were screened by L segment broad-spectrum nested reverse transcription-polymerase chain reaction (RT-PCR) or by BRNV-specific real-time RT-PCR. Three common noctules from Germany, one common noctule from Austria and three common noctules from Poland were positive in the hantavirus RNA screening. Conventional RT-PCR and primer walking resulted in the amplification of partial L segment and (almost) complete S and M segment coding sequences for samples from Germany and partial L segment sequences for samples from Poland. Phylogenetic analysis of these nucleotide sequences showed highest similarity to BRNV from Czech Republic. The exclusive detection of BRNV in common noctules from different countries suggests high host specificity. The RNA detection rate in common noctules ranged between 1 of 207 (0.5%; Austria), 3 of 245 (1.2%; Germany) and 3 of 20 (15%; Poland). In conclusion, this study demonstrates a broader distribution of BRNV in common noctules in Central Europe, but at low to moderate prevalence. Additional studies are needed to prove the zoonotic potential of this hantavirus and evaluate its transmission within bat populations.


Asunto(s)
Quirópteros , Infecciones por Hantavirus , Orthohantavirus , Animales , Filogenia , Orthohantavirus/genética , Europa (Continente) , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , ARN Viral/genética
6.
PNAS Nexus ; 1(3): pgac073, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35860599

RESUMEN

Until recently, it was assumed that members of the family Bornaviridae could not induce severe disease in humans. Today, however, Borna disease virus 1 (BoDV-1), as well as the more recently emerged variegated squirrel bornavirus 1 (VSBV-1), are known as causative agents of lethal encephalitis in humans. In order to establish animal models reflecting the pathogenesis in humans and for countermeasure efficacy testing, we infected twelve rhesus macaques (Macaca mulatta) either with VSBV-1 or with BoDV-1. For each virus, three monkeys each were inoculated with 2 × 104 focus forming units by the intracerebral route or by multiple peripheral routes (intranasal, conjunctival, intramuscular, and subcutaneous; same dose in total). All BoDV-1 and VSBV-1 intracerebrally infected monkeys developed severe neurological signs around 5 to 6 or 8 to 12 weeks postinfection, respectively. Focal myoclonus and tremors were the most prominent observations in BoDV-1 and VSBV-1-infected animals. VSBV-1-infected animals also showed behavioral changes. Only one BoDV-1 peripherally infected animal developed similar disease manifestations. All animals with severe clinical disease showed high viral loads in brain tissues and displayed perivascular mononuclear cuffs with a predominance of lymphocytes and similar meningeal inflammatory infiltrates. In summary, rhesus macaques intracerebrally infected with mammalian bornaviruses develop a human-like disease and may serve as surrogate models for human bornavirus infection.

7.
Cell Rep Med ; 3(1): 100499, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35106511

RESUMEN

Borna disease virus 1 (BoDV-1) causes rare but often fatal encephalitis in humans. Late diagnosis prohibits an experimental therapeutic approach. Here, we report a recent case of fatal BoDV-1 infection diagnosed on day 12 after hospitalization by detection of BoDV-1 RNA in the cerebrospinal fluid. In a retrospective analysis, we detect BoDV-1 RNA 1 day after hospital admission when the cell count in the cerebrospinal fluid is still normal. We develop a new ELISA using recombinant BoDV-1 nucleoprotein, phosphoprotein, and accessory protein X to detect seroconversion on day 12. Antibody responses are also shown in seven previously confirmed cases. The individual BoDV-1 antibody profiles show variability, but the usage of three different BoDV-1 antigens results in a more sensitive diagnostic tool. Our findings demonstrate that early detection of BoDV-1 RNA in cerebrospinal fluid and the presence of antibodies against at least two different viral antigens contribute to BoDV-1 diagnosis. Physicians in endemic regions should consider BoDV-1 infection in cases of unclear encephalopathy and initiate appropriate diagnostics at an early stage.


Asunto(s)
Anticuerpos/inmunología , Enfermedad de Borna/diagnóstico , Enfermedad de Borna/inmunología , Virus de la Enfermedad de Borna/fisiología , Nucleoproteínas/inmunología , Fosfoproteínas/inmunología , Proteínas Virales/inmunología , Anciano , Animales , Chlorocebus aethiops , Humanos , Proteínas Recombinantes/inmunología , Células Vero
8.
Viruses ; 14(2)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35215814

RESUMEN

African swine fever (ASF) is a major threat to pig production, and real-time PCR (qPCR) protocols are an integral part of ASF laboratory diagnosis. With the pandemic spread of ASF, commercial kits have risen on the market. In Germany, the kits have to go through an approval process and thus, general validation can be assumed. However, they have never been compared to each other. In this study, 12 commercial PCR kits were compared to an OIE-recommended method. Samples representing different matrices, genome loads, and genotypes were included in a panel that was tested under diagnostic conditions. The comparison included user-friendliness, internal controls, and the time required. All qPCRs were able to detect ASFV genome in different matrices across all genotypes and disease courses. With one exception, there were no significant differences when comparing the overall mean. The overall specificity was 100% (95% CI 87.66-100), and the sensitivity was between 95% and 100% (95% CI 91.11-100). As can be expected, variability concerned samples with low genome load. To conclude, all tests were fit for purpose. The test system can therefore be chosen based on compatibility and prioritization of the internal control system.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus de la Fiebre Porcina Africana/clasificación , Crianza de Animales Domésticos/organización & administración , Animales , ADN Viral/genética , Genoma Viral , Genotipo , Alemania , Juego de Reactivos para Diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación , Sensibilidad y Especificidad , Porcinos , Organización Mundial de la Salud
9.
Viruses ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34452403

RESUMEN

Lyssaviruses are the causative agents for rabies, a zoonotic and fatal disease. Bats are the ancestral reservoir host for lyssaviruses, and at least three different lyssaviruses have been found in bats from Germany. Across Europe, novel lyssaviruses were identified in bats recently and occasional spillover infections in other mammals and human cases highlight their public health relevance. Here, we report the results from an enhanced passive bat rabies surveillance that encompasses samples without human contact that would not be tested under routine conditions. To this end, 1236 bat brain samples obtained between 2018 and 2020 were screened for lyssaviruses via several RT-qPCR assays. European bat lyssavirus type 1 (EBLV-1) was dominant, with 15 positives exclusively found in serotine bats (Eptesicus serotinus) from northern Germany. Additionally, when an archived set of bat samples that had tested negative for rabies by the FAT were screened in the process of assay validation, four samples tested EBLV-1 positive, including two detected in Pipistrellus pipistrellus. Subsequent phylogenetic analysis of 17 full genomes assigned all except one of these viruses to the A1 cluster of the EBLV-1a sub-lineage. Furthermore, we report here another Bokeloh bat lyssavirus (BBLV) infection in a Natterer's bat (Myotis nattereri) found in Lower Saxony, the tenth reported case of this novel bat lyssavirus.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades/veterinaria , Monitoreo Epidemiológico/veterinaria , Lyssavirus/genética , Lyssavirus/aislamiento & purificación , Infecciones por Rhabdoviridae/veterinaria , Animales , Reservorios de Enfermedades/virología , Femenino , Alemania/epidemiología , Lyssavirus/clasificación , Masculino , Filogenia , ARN Viral/genética , Estudios Retrospectivos , Infecciones por Rhabdoviridae/epidemiología , Zoonosis Virales/epidemiología , Zoonosis Virales/transmisión
10.
Emerg Microbes Infect ; 10(1): 602-611, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33706665

RESUMEN

The variegated squirrel bornavirus 1 (VSBV-1) is a recently discovered emerging viral pathogen which causes severe and eventually fatal encephalitis in humans after contact to exotic squirrels in private holdings and zoological gardens. Understanding the VSBV-1 epidemiology is crucial to develop, implement, and maintain surveillance strategies for the detection and control of animal and human infections. Based on a newly detected human encephalitis case in a zoological garden, epidemiological squirrel trade investigations and molecular phylogeny analyses of VSBV-1 with temporal and spatial resolution were conducted. Phylogenetic analyses indicated a recent emergence of VSBV-1 in European squirrel holdings and several animal-animal and animal-human spill-over infections. Virus phylogeny linked to squirrel trade analysis showed the introduction of a common ancestor of the known current VSBV-1 isolates into captive exotic squirrels in Germany, most likely by Prevost's squirrels (Callosciurus prevostii). The links of the animal trade between private breeders and zoos, the likely introduction pathway of VSBV-1 into Germany, and the role of a primary animal distributor were elucidated. In addition, a seroprevalence study was performed among zoo animal caretakers from VSBV-1 affected zoos. No seropositive healthy zoo animal caretakers were found, underlining a probable high-case fatality rate of human VSBV-1 infections. This study illustrates the network and health consequences of uncontrolled wild pet trading as well as the benefits of molecular epidemiology for elucidation and future prevention of infection chains by zoonotic viruses. To respond to emerging zoonotic diseases rapidly, improved regulation and control strategies are urgently needed.


Asunto(s)
Bornaviridae/aislamiento & purificación , Infecciones por Mononegavirales/epidemiología , Infecciones por Mononegavirales/virología , Sciuridae/virología , Zoonosis/epidemiología , Zoonosis/virología , Animales , Teorema de Bayes , Bornaviridae/clasificación , Bornaviridae/genética , Encefalitis/virología , Femenino , Genoma Viral , Alemania/epidemiología , Humanos , Masculino , Infecciones por Mononegavirales/transmisión , Filogenia , Reacción en Cadena de la Polimerasa , ARN Viral , Estudios Seroepidemiológicos , Zoonosis/transmisión
11.
Microbiome ; 9(1): 51, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33610182

RESUMEN

BACKGROUND: The detection of pathogens in clinical and environmental samples using high-throughput sequencing (HTS) is often hampered by large amounts of background information, which is especially true for viruses with small genomes. Enormous sequencing depth can be necessary to compile sufficient information for identification of a certain pathogen. Generic HTS combining with in-solution capture enrichment can markedly increase the sensitivity for virus detection in complex diagnostic samples. METHODS: A virus panel based on the principle of biotinylated RNA baits was developed for specific capture enrichment of epizootic and zoonotic viruses (VirBaits). The VirBaits set was supplemented by a SARS-CoV-2 predesigned bait set for testing recent SARS-CoV-2-positive samples. Libraries generated from complex samples were sequenced via generic HTS (without enrichment) and afterwards enriched with the VirBaits set. For validation, an internal proficiency test for emerging epizootic and zoonotic viruses (African swine fever virus, Ebolavirus, Marburgvirus, Nipah henipavirus, Rift Valley fever virus) was conducted. RESULTS: The VirBaits set consists of 177,471 RNA baits (80-mer) based on about 18,800 complete viral genomes targeting 35 epizootic and zoonotic viruses. In all tested samples, viruses with both DNA and RNA genomes were clearly enriched ranging from about 10-fold to 10,000-fold for viruses including distantly related viruses with at least 72% overall identity to viruses represented in the bait set. Viruses showing a lower overall identity (38% and 46%) to them were not enriched but could nonetheless be detected based on capturing conserved genome regions. The internal proficiency test supports the improved virus detection using the combination of HTS plus targeted enrichment but also points to the risk of cross-contamination between samples. CONCLUSIONS: The VirBaits approach showed a high diagnostic performance, also for distantly related viruses. The bait set is modular and expandable according to the favored diagnostics, health sector, or research question. The risk of cross-contamination needs to be taken into consideration. The application of the RNA-baits principle turned out to be user friendly, and even non-experts can easily use the VirBaits workflow. The rapid extension of the established VirBaits set adapted to actual outbreak events is possible as shown for SARS-CoV-2. Video abstract.


Asunto(s)
SARS-CoV-2/aislamiento & purificación , Virus/aislamiento & purificación , Zoonosis/diagnóstico , Animales , ADN Viral/genética , Genoma Viral , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Virus/clasificación
12.
Zoonoses Public Health ; 68(2): 110-120, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33428333

RESUMEN

The newly described zoonotic variegated squirrel bornavirus 1 (VSBV-1) in German squirrel holdings has been associated with the death of three private owners and one zoo animal caretaker (confirmed cases). Epidemiological investigations were severely impeded by the general lack of data on holdings of the putative reservoir hosts, the family Sciuridae. To fill this lack of data for detailed epidemiological investigations of the captive squirrel population, a register of private and zoological squirrel holdings was established. The findings show a broad variety of kept species and their frequency distribution. By contacting the different stakeholders via Web-based social groups and societies, information passed in both directions so that disease awareness could be raised and participants could be recruited for further studies. Cross-sectional studies revealed a prevalence of VSBV-1-positive subpopulations of 0% (95% CI 0%-6.2%) among private squirrel collections and 1.9% (95% CI: 0%-9.9%) among zoos in Germany. The approach presented here can be transferred to other populations of non-traditional pets, which may be equally difficult to monitor, in the case of an emerging zoonotic infectious disease.


Asunto(s)
Bornaviridae/clasificación , Enfermedades de los Roedores/virología , Sciuridae/virología , Animales , Animales de Zoológico , Bornaviridae/genética , Enfermedades Transmisibles Emergentes/veterinaria , Estudios Transversales , Alemania/epidemiología , Filogenia , Prevalencia , ARN Viral/genética , Enfermedades de los Roedores/epidemiología , Zoonosis
13.
Vaccines (Basel) ; 9(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374808

RESUMEN

Capripox virus (CaPV)-induced diseases (lumpy skin disease, sheeppox, goatpox) are described as the most serious pox diseases of livestock animals, and therefore are listed as notifiable diseases under guidelines of the World Organisation for Animal Health (OIE). Until now, only live-attenuated vaccines are commercially available for the control of CaPV. Due to numerous potential problems after vaccination (e.g., loss of the disease-free status of the respective country, the possibility of vaccine virus shedding and transmission as well as the risk of recombination with field strains during natural outbreaks), the use of these vaccines must be considered carefully and is not recommended in CaPV-free countries. Therefore, innocuous and efficacious inactivated vaccines against CaPV would provide a great tool for control of these diseases. Unfortunately, most inactivated Capripox vaccines were reported as insufficient and protection seemed to be only short-lived. Nevertheless, a few studies dealing with inactivated vaccines against CaPV are published, giving evidence for good clinical protection against CaPV-infections. In our studies, a low molecular weight copolymer-adjuvanted vaccine formulation was able to induce sterile immunity in the respective animals after severe challenge infection. Our findings strongly support the possibility of useful inactivated vaccines against CaPV-infections, and indicate a marked impact of the chosen adjuvant for the level of protection.

14.
Emerg Microbes Infect ; 9(1): 2474-2484, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33151793

RESUMEN

The variegated squirrel bornavirus 1 (VSBV-1), a member of the family Bornaviridae, was discovered in 2015 in a series of lethal human infections. Screening approaches revealed kept exotic squirrels as the putative source of infection. Infectious virus was successfully isolated by co-cultivation of infected primary squirrel cells with permanent cell lines. For in vivo characterization, neonatal and adult Lewis rats were inoculated either intracranially, intranasally or subcutaneously. After 4.5 months, three out of fifteen neonatal intracranially inoculated rats were VSBV-1 genome positive in the central nervous system without showing clinical signs. Pathohistological examination revealed a non-purulent encephalitis. While infection of immune incompetent rats (neonatal) using the type species of mammalian bornaviruses, the Borna disease virus 1, proceed to an immune tolerant status, VSBV-1 infection could result in inflammation of neuronal tissue. Sequencing showed minor adaptations within the VSBV-1 genome comparing to the viral genomes from infected squirrels, cell cultures or rat tissues. In conclusion, we were able to generate the first VSBV-1 isolates and provide in vivo animal model data in Lewis rats revealing substantial differences between VSBV-1 and BoDV-1. Furthermore, the presented data are a precondition for insights into the transmission and pathogenesis of this novel zoonotic pathogen.


Asunto(s)
Bornaviridae/patogenicidad , Encefalitis Viral/virología , Infecciones por Mononegavirales/virología , ARN Viral/genética , Sciuridae/virología , Análisis de Secuencia de ARN/métodos , Adaptación Fisiológica , Animales , Bornaviridae/genética , Bornaviridae/aislamiento & purificación , Células Cultivadas , Sistema Nervioso Central/virología , Chlorocebus aethiops , Técnicas de Cocultivo , Femenino , Tamaño del Genoma , Genoma Viral , Genotipo , Masculino , Cultivo Primario de Células , Ratas , Ratas Endogámicas Lew , Células Vero
15.
Lancet Microbe ; 1(5): e218-e225, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32838346

RESUMEN

BACKGROUND: In December, 2019, a novel zoonotic severe acute respiratory syndrome-related coronavirus emerged in China. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became pandemic within weeks and the number of human infections and severe cases is increasing. We aimed to investigate the susceptibilty of potential animal hosts and the risk of anthropozoonotic spill-over infections. METHODS: We intranasally inoculated nine fruit bats (Rousettus aegyptiacus), ferrets (Mustela putorius), pigs (Sus scrofa domesticus), and 17 chickens (Gallus gallus domesticus) with 105 TCID50 of a SARS-CoV-2 isolate per animal. Direct contact animals (n=3) were included 24 h after inoculation to test viral transmission. Animals were monitored for clinical signs and for virus shedding by nucleic acid extraction from nasal washes and rectal swabs (ferrets), oral swabs and pooled faeces samples (fruit bats), nasal and rectal swabs (pigs), or oropharyngeal and cloacal swabs (chickens) on days 2, 4, 8, 12, 16, and 21 after infection by quantitative RT-PCR (RT-qPCR). On days 4, 8, and 12, two inoculated animals (or three in the case of chickens) of each species were euthanised, and all remaining animals, including the contacts, were euthanised at day 21. All animals were subjected to autopsy and various tissues were collected for virus detection by RT-qPCR, histopathology immunohistochemistry, and in situ hybridisation. Presence of SARS-CoV-2 reactive antibodies was tested by indirect immunofluorescence assay and virus neutralisation test in samples collected before inoculation and at autopsy. FINDINGS: Pigs and chickens were not susceptible to SARS-CoV-2. All swabs, organ samples, and contact animals were negative for viral RNA, and none of the pigs or chickens seroconverted. Seven (78%) of nine fruit bats had a transient infection, with virus detectable by RT-qPCR, immunohistochemistry, and in situ hybridisation in the nasal cavity, associated with rhinitis. Viral RNA was also identified in the trachea, lung, and lung-associated lymphatic tissue in two animals euthanised at day 4. One of three contact bats became infected. More efficient virus replication but no clinical signs were observed in ferrets, with transmission to all three direct contact animals. Mild rhinitis was associated with viral antigen detection in the respiratory and olfactory epithelium. Prominent viral RNA loads of 0-104 viral genome copies per mL were detected in the upper respiratory tract of fruit bats and ferrets, and both species developed SARS-CoV-2-reactive antibodies reaching neutralising titres of up to 1/1024 after 21 days. INTERPRETATION: Pigs and chickens could not be infected intranasally by SARS-CoV-2, whereas fruit bats showed characteristics of a reservoir host. Virus replication in ferrets resembled a subclinical human infection with efficient spread. Ferrets might serve as a useful model for further studies-eg, testing vaccines or antivirals. FUNDING: German Federal Ministry of Food and Agriculture.


Asunto(s)
COVID-19 , Quirópteros , Rinitis , Animales , Anticuerpos Antivirales , COVID-19/veterinaria , Pollos/genética , Quirópteros/genética , Hurones/genética , ARN Viral/genética , SARS-CoV-2
16.
Virol J ; 17(1): 42, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32220234

RESUMEN

BACKGROUND: Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. METHODS: Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription-quantitative PCR (RT-qPCR). RESULTS: In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR). Splice sites of the PyV genomes were predicted in silico for large T antigen, small T antigen, and VP2 coding sequences, and experimentally confirmed in Vero and NIH/3T3 cells. Attempts to extend the HV DPOL sequences in upstream direction resulted in contiguous sequences of around 3.3 kilobase pairs for one BHV and two GHVs. Phylogenetic analysis allocated the novel squirrel PyVs to the genera Alpha- and Betapolyomavirus, the BHVs to the genus Muromegalovirus, and the GHVs to the genera Rhadinovirus and Macavirus. CONCLUSIONS: This is the first report on molecular identification and sequence characterization of PyVs and HVs and the detection of bornavirus coinfections with PyVs or HVs in two squirrel species. Multiple detection of PyVs and HVs in certain squirrel species exclusively indicate their potential host association to a single squirrel species. The novel PyVs and HVs might serve for a better understanding of virus evolution in invading host species in the future.


Asunto(s)
Bornaviridae/clasificación , Herpesviridae/clasificación , Filogenia , Poliomavirus/clasificación , Sciuridae/virología , Animales , Bornaviridae/aislamiento & purificación , Genoma Viral , Herpesviridae/aislamiento & purificación , Poliomavirus/aislamiento & purificación , Sciuridae/clasificación , Análisis de Secuencia de ADN
17.
Transbound Emerg Dis ; 67(5): 2093-2107, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32223069

RESUMEN

Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, an often fatal neurologic condition of domestic mammals, including New World camelids, in endemic areas in Central Europe. Recently, BoDV-1 gained further attention by the confirmation of fatal zoonotic infections in humans. Although Borna disease and BoDV-1 have been described already over the past decades, comprehensive reports of Borna disease outbreaks in domestic animals employing state-of-the-art diagnostic methods are missing. Here, we report a series of BoDV-1 infections in a herd of 27 alpacas (Vicugna pacos) in the federal state of Brandenburg, Germany, which resulted in eleven fatalities (41%) within ten months. Clinical courses ranged from sudden death without previous clinical signs to acute or chronic neurologic disease with death occurring after up to six months. All animals that underwent necropsy exhibited a non-suppurative encephalitis. In addition, six apparently healthy seropositive individuals were identified within the herd, suggesting subclinical BoDV-1 infections. In infected animals, BoDV-1 RNA and antigen were mainly restricted to the central nervous system and the eye, and sporadically detectable in large peripheral nerves and neuronal structures in other tissues. Pest control measures on the farm resulted in the collection of a BoDV-1-positive bicoloured white-toothed shrew (Crocidura leucodon), while all other trapped small mammals were negative. A phylogeographic analysis of BoDV-1 sequences from the alpacas, the shrew and BoDV-1-positive equine cases from the same region in Brandenburg revealed a previously unreported endemic area of BoDV-1 cluster 4 in North-Western Brandenburg. In conclusion, alpacas appear to be highly susceptible to BoDV-1 infection and display a highly variable clinical picture ranging from peracute death to subclinical forms. In addition to horses and sheep, they can serve as sensitive sentinels used for the identification of endemic areas.

18.
Lancet Infect Dis ; 20(4): 467-477, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31924550

RESUMEN

BACKGROUND: In 2018-19, Borna disease virus 1 (BoDV-1), the causative agent of Borna disease in horses, sheep, and other domestic mammals, was reported in five human patients with severe to fatal encephalitis in Germany. However, information on case frequencies, clinical courses, and detailed epidemiological analyses are still lacking. We report the occurrence of BoDV-1-associated encephalitis in cases submitted to the Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany, and provide a detailed description of newly identified cases of BoDV-1-induced encephalitis. METHODS: All brain tissues from 56 encephalitis cases from Bavaria, Germany, of putative viral origin (1999-2019), which had been submitted for virological testing upon request of the attending clinician and stored for stepwise diagnostic procedure, were systematically screened for BoDV-1 RNA. Two additional BoDV-1-positive cases were contributed by other diagnostic centres. Positive results were confirmed by deep sequencing, antigen detection, and determination of BoDV-1-reactive antibodies in serum and cerebrospinal fluid. Clinical and epidemiological data from infected patients were collected and analysed. FINDINGS: BoDV-1 RNA and bornavirus-reactive antibodies were detected in eight newly analysed encephalitis cases and the first human BoDV-1 isolate was obtained from an unequivocally confirmed human BoDV-1 infection from the endemic area. Six of the eight BoDV-1-positive patients had no record of immunosuppression before the onset of fatal disease, whereas two were immunocompromised after solid organ transplantation. Typical initial symptoms were headache, fever, and confusion, followed by various neurological signs, deep coma, and severe brainstem involvement. Seven of nine patients with fatal encephalitis of unclear cause were BoDV-1 positive within one diagnostic centre. BoDV-1 sequence information and epidemiological analyses indicated independent spillover transmissions most likely from the local wild animal reservoir. INTERPRETATION: BoDV-1 infection has to be considered as a potentially lethal zoonosis in endemic regions with reported spillover infections in horses and sheep. BoDV-1 infection can result in fatal encephalitis in immunocompromised and apparently healthy people. Consequently, all severe encephalitis cases of unclear cause should be tested for bornaviruses especially in endemic regions. FUNDING: German Federal Ministry of Education and Research.


Asunto(s)
Enfermedad de Borna/complicaciones , Enfermedad de Borna/epidemiología , Virus de la Enfermedad de Borna/genética , Encefalitis/etiología , Encefalitis/patología , Zoonosis , Animales , Anticuerpos Antivirales/sangre , Enfermedad de Borna/virología , Encefalitis/mortalidad , Alemania/epidemiología , Caballos/genética , Humanos , ARN Viral/genética , Ovinos/genética , Replicación Viral
19.
Virol J ; 17(1): 6, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31952524

RESUMEN

BACKGROUND: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. METHODS: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. RESULTS: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs. CONCLUSIONS: Our findings further highlight the possible importance of snake nidoviruses in respiratory diseases and proof multiple circulating strains with varying disease potential. Nidovirus detection in clinical healthy individuals might represent testing during the incubation period or reconvalescence. Our investigations show new aspects of nidovirus infections in pythons. Nidoviruses should be included in routine diagnostic workup of diseased reptiles.


Asunto(s)
Boidae/virología , Infecciones por Nidovirales/veterinaria , Nidovirales , Animales , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Metagenómica , Nidovirales/genética , Nidovirales/aislamiento & purificación , Filogenia , Neumonía/veterinaria , Neumonía/virología , ARN Viral/genética , Estomatitis/veterinaria , Estomatitis/virología
20.
Infect Genet Evol ; 78: 104140, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31837485

RESUMEN

Chiroptera form the second largest order of mammals and compromise >1200 species, of which only 51 species are abundant in Europe. As bats are important hosts involved in the emergence and spread of zoonotic infections, it is becoming more important to discriminate the different species of bats involved in the maintenance of causative agents. However, traditional taxonomic methods rely on morphological features and are challenging as they require long-lasting experience of an investigator and sometimes fail if the specimen is of poor condition. On the other hand, barcoding requires sequencing and is time consuming. Therefore, a versatile genetic approach for rapid species identification would be valuable. In this study, two mitochondrial loci, cytochrome b (cyt b) and cytochrome c oxidase subunit I (COI) were selected for the development of two multiplex qPCRs for differentiating four very abundant bat species in Germany using DNA extracted from the patagium or organ pools. Verification of the developed assays using a set of 1000 individual bat samples belonging to 20 different European species clearly showed that the multiplex qPCRs were able to determine the four most abundant species in this collection by a COI based qPCR. All other bat species which could not be covered by this approach could be easily identified by sequencing of the amplicon generated by broad-range qPCRs for cyt B and COI, respectively. Moreover, the double-check approach with cyt B and COI makes the identification of bats into species more reliable. The new multiplex PCRs allow a fast and easy genotyping of German bats and could be useful for screening approaches.


Asunto(s)
Quirópteros/genética , Reacción en Cadena de la Polimerasa/métodos , Animales , Quirópteros/clasificación , Alemania , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...