Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169280, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128667

RESUMEN

The present study provides indications and underlying drivers of wave-induced transport and retention potential of microplastic particles (MP) in marine vegetation canopies having different densities. The anthropogenic occurrence of MP in coastal waters is well documented in the recent literature. It is acknowledged that coastal vegetation can serve as a sink for MP due to its energy dissipating features, which can mimic a novel ecosystem service. While the transport behavior of MP in vegetation has previously been investigated to some extent for stationary flow conditions, fundamental investigations for unsteady surf zone flow conditions under irregular waves are still lacking. Herein, we demonstrate by means of hydraulic model tests that a vegetation's retention potential of MP in waves increases with the vegetation shoot density, the MP settling velocity and decreasing wave energy. It is found that particles migrating by traction (predominantly in contact with the bed) are trapped in the wake regions around a canopy, whereas suspended particles are able to pass vegetated areas more easily. Very dense canopies can also promote the passage of MP with diameters larger than the plant spacing, as the canopies then show characteristics of a solid sill and avoid particle penetration. The particle migration ability through a marine vegetation canopy is quantified, and the key drivers are described by an empirical expression based on the particle settling velocity, the canopy length and density. The findings of this study may contribute to improved prediction and assessment of MP accumulation hotspots in vegetated coastal areas and, thus, may help in tracing MP sinks. Such knowledge can be considered a prerequisite to develope methods or new technologies to recover plastic pollutants and rehabilitate valuable coastal environments.

2.
Sci Rep ; 13(1): 19418, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940669

RESUMEN

Seagrass restoration can be promoted through the use of artificial seagrass (ASG). However, there is no guideline for ASG design, which requires a sound understanding of the inherent hydrodynamics in a submerged environment. Present know-how primarily stems from idealized ASG attached to a fixed bed. To develop accessible field deployment for restoration, anchored prototype scale ASG mats (coconut mesh) were proposed and tested under differing wave conditions. The aim of this study was then to: 1) analyze hydrodynamic interaction of ASG mats; and 2) assess the suitability of contemporary predictive hydrodynamic models. Velocity structure and wave propagation were measured around one and two ASG mats (separated by a 2-m gap). The mats reduced orbital velocities by up to 16% (2 mats), whereby the average reduction of all tested vegetated conditions was low ([Formula: see text]) compared to the non-vegetated conditions. Velocities increased above the ASG, with the gap enhancing velocity (up to 11%) instead of attenuating it. Wave decay followed an exponential decrease, further enhanced by the second mat. Current models did not capture the induced hydrodynamics for the full range of wave conditions tested, with the second mat increasing uncertainties. Wave decay models generally overestimated wave attenuation (up to 30%), except for longer wave periods. Nevertheless, for the full range of conditions, the models provide accurate insight into the expected magnitude of attenuation under field conditions. It is speculated that mat flexibility affects the surrounding hydrodynamics through inherent motion, with the gap contributing to the uncertainties.


Asunto(s)
Conservación de los Recursos Naturales , Hidrodinámica , Ecosistema
3.
Environ Sci Technol ; 57(25): 9362-9375, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37322884

RESUMEN

Incipient motion conditions for 57 regular (spheres, cylinders, disks, square plates, cubes, square prisms, rectangular prisms, tetrahedrons, and fibers) and eight irregular microplastic particle groups, having various sizes and densities, are investigated in a circular flume. The present data set is combined with additional data from the literature and systematically analyzed. A new framework is developed for predicting incipient motion conditions for foreign particles, accounting for variations in static friction, hydraulic roughness, and hiding-exposure effects. Via this framework, incipient motion conditions for microplastic particles lying on a sediment bed are, for the first time, reconciled with the classical Shields diagram.


Asunto(s)
Microplásticos , Plásticos , Sedimentos Geológicos
4.
Environ Res ; 228: 115783, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028533

RESUMEN

The settling velocities of 66 microplastic particle groups, having both regular (58) and irregular (eight) shapes, are measured experimentally. Regular shapes considered include: spheres, cylinders, disks, square plates, cubes, other cuboids (square and rectangular prisms), tetrahedrons, and fibers. The experiments generally consider Reynolds numbers greater than 102, extending the predominant range covered by previous studies. The present data is combined with an extensive data set from the literature, and the settling velocities are systematically analyzed on a shape-by-shape basis. Novel parameterizations and predictive drag coefficient formulations are developed for both regular and irregular particle shapes, properly accounting for preferential settling orientation. These are shown to be more accurate than the best existing predictive formulation from the literature. The developed method for predicting the settling velocity of irregularly-shaped microplastic particles is demonstrated to be equally well suited for natural sediments in the Appendix.


Asunto(s)
Contaminantes Ambientales , Microplásticos , Tamaño de la Partícula , Plásticos
5.
Mar Pollut Bull ; 187: 114610, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669300

RESUMEN

This paper presents experimental measurements of beaching times for buoyant microplastic particles released, both in the pre-breaking region and within the surf zone. The beaching times are used to quantify cross-shore Lagrangian transport velocities of the microplastics. Prior to breaking the particles travel onshore with a velocity close to the Lagrangian fluid particle velocity, regardless of particle characteristics. In the surf zone the Lagrangian velocities of the microplastics increase and become closer to the wave celerity. Furthermore, it is demonstrated that particles having low Dean numbers (dimensionless fall velocity) are transported at higher mean velocities, as they have a larger tendency to be at the free-surface relative to particles with higher Dean numbers. An empirical relation is formulated for predicting the cross-shore Lagrangian transport velocities of buoyant microplastic particles, valid for both non-breaking and breaking irregular waves. The expression matches the present experiments well, in addition to two prior studies.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
6.
Mar Pollut Bull ; 181: 113902, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35820236

RESUMEN

This paper presents experimental results on the cross-shore distribution of non-buoyant microplastic particles under irregular waves propagating, shoaling and breaking on live sediment sloping beds. Eighteen microplastic particle groups having various shapes, densities, and sizes are tested. The experiments consider two initial bottom configurations corresponding to a (i) plane bed and (ii) pre-developed singly-barred profile (more representative of field conditions). Four different microplastic accumulation hotspots are identified: offshore of the breaker bar, at the breaker bar, the plateau region between the breaker bar and beach, and the beach. It is found that the accumulation patterns primarily fall within three different particle Dean number regimes. The importance of plunger-type breaking waves for both on and offshore transport of microplastic particles is highlighted.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Plásticos , Contaminantes Químicos del Agua/análisis
7.
Nat Commun ; 12(1): 5882, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620859

RESUMEN

Adapting to climate change and sea level rise is challenging on small islands. False adaptation can lead to adverse impacts on natural and societal dynamics. Therefore, an interdisciplinary perspective on the interaction of natural dynamics, societal demands, and political decisions is crucial. In this sense, this study scrutinizes coastal processes and socio-political dimensions of erosion on the reef island Fuvahmulah, the Maldives. The national government and Fuvahmulah's population have an opposed perception and attribution of the drivers and processes behind Fuvahmulah's most pressing coastal issue - coastal erosion. To review these perceptions, natural dynamics are recreated with process-based methods and discussed regarding present and projected marine pressures. Population surveys and interviews with actors in coastal development complement the physical insights into erosion on Fuvahmulah and describe the socio-political dimension of climate change adaptation on small islands. This interdisciplinary approach demonstrates how small-islands' adaptive capacities are typically impaired and disclose the potential of local knowledge to overcome maldevelopment.

8.
Sci Rep ; 9(1): 17823, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780684

RESUMEN

The delta of the Mekong River in Vietnam has been heavily impacted by anthropogenic stresses in recent years, such as upstream dam construction and sand mining within the main and distributary channels, leading to riverbank and coastal erosion. Intensive bathymetric surveys, conducted within the Tien River branch during the dry and wet season 2018, reveal a high magnitude of sand mining activities. For the year 2018, an analysis of bathymetric maps and the local refilling processes leads to an estimated sand extraction volume of 4.64 [Formula: see text] 0.31 Mm[Formula: see text]/yr in the study area, which covered around 20 km. Reported statistics of sand mining for all of the Mekong's channels within the delta, which have a cumulative length of several hundred kilometres, are 17.77 Mm[Formula: see text]/yr for this period. Results from this study highlight that these statistics are likely too conservative. It is also shown that natural sediment supplies from upper reaches of the Mekong are insufficient to compensate for the loss of extracted bed aggregates, illustrating the non-sustainable nature of the local sand mining practices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...