Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805652

RESUMEN

The purpose of this research was to determine how common chemical treatments influence Varroa destructor (Anderson and Trueman) population resurgence rates (defined as time posttreatment for mite populations to reach 3 mites/100 adult bees) in managed honey bee (Apis mellifera L.) colonies seasonally. We conducted 2 experiments that followed the same basic protocol to address this purpose. We established 6 treatment groups in Experiment 1 in the fall of 2014: untreated control, Apivar, Apistan, CheckMite+, ApiLifeVar, and Mite Away II applied to 10 colonies per treatment. In Experiment 2, we applied 8 chemical treatments to each of 4 seasonal (spring, summer, fall, and winter) cohorts of honey bee colonies to determine how mite populations are influenced by the treatments. The treatments/formulations tested were Apivar, Apistan, Apiguard, MAQS, CheckMite+, oxalic acid (dribble), oxalic acid (shop towels), and amitraz (shop towels soaked in Bovitraz). In Experiment 1, Apivar and Mite Away II were able to delay V. destructor resurgence for 2 and 6 months, respectively. In Experiment 2, Apiguard, MAQS, oxalic acid (dribble), and Bovitraz treatments were effective at delaying V. destructor resurgence for at least 2 months during winter and spring. Only the Bovitraz and MAQS treatments were effective at controlling V. destructor in the summer and fall. Of the 2 amitraz-based treatments, the off-label Bovitraz treatment was the only treatment to reduce V. destructor populations in every season. The data gathered through this study allow for the refinement of treatment recommendations for V. destructor, especially regarding the seasonal efficacy of each miticide and the temporal efficacy posttreatment.


Asunto(s)
Acaricidas , Estaciones del Año , Varroidae , Animales , Varroidae/efectos de los fármacos , Abejas/parasitología , Apicultura
2.
Ecotoxicol Environ Saf ; 268: 115718, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000305

RESUMEN

Chronic toxicity tests on adult and larval honey bees (Apis mellifera) can require the use of dietary additives (solvents, emulsifiers, adjuvants and viscosifier agents) when the active ingredient of plant protection products cannot be dissolved or does not remain stable and homogeneous within the test diets. Acetone is the widely used and accepted solvent allowed within the international regulatory guidelines, but it can be ineffective in keeping certain compounds in solution and can cause toxicity to adults and larvae. In this publication, we present an evaluation of alternative additives in adult and larval diets. Six dietary additives including five solvents (ethanol, isopropanol, n-propanol, propylene glycol and triethylene glycol) and a viscosifier agent (xanthan gum) at five concentrations along with a negative control and a solvent control (acetone) were investigated at seven laboratories. The safe levels for bees were determined for each of the additives used in the 10-day chronic adult and 22-day chronic larval tests. In the 10-day chronic adult study, ethanol and isopropanol were found to be safe at concentrations ≤ 5.0 %, while xanthan gum can be reliably used at concentrations ≤ 0.1 %. Greater variability across laboratories was observed for N-propanol, propylene glycol, and triethylene glycol and these agents may cause mortality when added to diets at concentrations above 0.25-0.5 %. The safe levels of additives to larval diet in the 22-day chronic larval test had a greater variability and were generally lower than what were observed for adult diet. Our results do not recommend the inclusion of ethanol or n-propanol into the larval diet, and isopropanol, propylene glycol, and triethylene glycol may cause mortality at concentrations above 0.25-0.5 %. Safe levels for xanthan gum were more variable than what was observed for adults, but it can be used reliably at concentrations ≤ 0.05 %. Our analyses conclude that several additives can be integrated successfully in honey bee laboratory bioassays at levels that cause low mortality to adults and larvae.


Asunto(s)
2-Propanol , Acetona , Abejas , Animales , Larva , 1-Propanol , Laboratorios , Dieta , Solventes , Etanol , Glicoles de Propileno
3.
J Invertebr Pathol ; 200: 107973, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37479057

RESUMEN

Pollinators have experienced significant declines in the past decade, in part due to emerging infectious diseases. Historically, studies have primarily focused on pathogens in the Western honey bee, Apis mellifera. However, recent work has demonstrated that these pathogens are shared by other pollinators and can negatively affect their health. Here, we surveyed honey bees and 15 native bee and wasp species for 13 pathogens traditionally associated with honey bees. The native bee and wasp species included 11 species not previously screened for pathogens. We found at least one honey bee-associated pathogen in 53% of native bee and wasp samples. The most widely distributed and commonly detected pathogens were the microsporidian Nosema ceranae, the bacterium Melissococcus plutonius, and the viruses deformed wing virus and black queen cell virus. The prevalence of viruses was generally higher in honey bees than in native bees and wasps. However, the prevalence of M. plutonius and the brood fungus Ascosphaera apis was significantly higher in some native bee species than in honey bees. The data also reveal novel trends in the association between co-occurring pathogens in honey bees and native bees and wasps at the pathogen community level. These results can inform the assessment of risks that native pollinator species face from pathogen stress, and indicate that many non-viral pathogens, notably M. plutonius and N. ceranae, are far more widely distributed and commonly found in native bees and wasps than previously thought.


Asunto(s)
Nosema , Virus ARN , Virus , Avispas , Abejas , Animales , Prevalencia
4.
Environ Entomol ; 50(5): 1105-1117, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34279555

RESUMEN

Risk assessment for chemicals in the United States relies upon the honey bee (Apis meliffera L. [Hymenoptera: Apidae]) as a surrogate for other bee species. There is uncertainty in extrapolating honey bee toxicity data to bumble bees due to differences in life history strategies, food consumption, and nest structure. Here we evaluated the design of a queenless bumble bee microcolony test that could be considered for generating larval toxicity data. Three microcolony studies were conducted with Bombus impatiens to evaluate the effects of exposure to 1) diflubenzuron in pollen, 2) dimethoate in pollen, and 3) dimethoate in sucrose. Immature drone bee emergence, worker survival, pollen, and sucrose utilization were measured throughout the study duration. For dimethoate, a 10-d chronic adult bumble bee study was also conducted to compare microcolony endpoints to toxicity endpoints on individual adults. Microcolonies exposed to 10 mg diflubenzuron/kg pollen produced fewer adult drones despite no effects on worker survival. Microcolonies treated with dimethoate at ≥3 mg a.i./kg pollen and ≥0.1 mg a.i./kg sucrose solution produced fewer drones. Exposure to dimethoate in the 10-d chronic adult study resulted in direct mortality to the adult workers at ≥0.1 mg a.i./kg diet. Results from the 10-d study suggest direct effects of dimethoate on workers in the microcolony will alter provisioning of diet to the brood, resulting in lower drone production in the microcolony. Our data suggest that the microcolony study is only appropriate to assess brood effects to bumble bees for substances with low toxicity to adults, as demonstrated with diflubenzuron.


Asunto(s)
Himenópteros , Plaguicidas , Animales , Abejas , Dieta , Larva , Polen
5.
Environ Pollut ; 256: 113420, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31813703

RESUMEN

Pesticide exposure is regarded as a contributing factor to the high gross loss rates of managed colonies of Apis mellifera. Pesticides enter the hive through contaminated nectar and pollen carried by returning forager honey bees or placed in the hive by beekeepers when managing hive pests. We used an in vitro rearing method to characterize the effects of seven pesticides on developing brood subjected dietary exposure at worse-case environmental concentrations detected in wax and pollen. The pesticides tested included acaricides (amitraz, coumaphos, fluvalinate), insecticides (chlorpyrifos, imidacloprid), one fungicide (chlorothalonil), and one herbicide (glyphosate). The larvae were exposed chronically for six days of mimicking exposure during the entire larval feeding period, which is the worst possible scenario of larval exposure. Survival, duration of immature development, the weight of newly emerged adult, morphologies of the antenna and the hypopharyngeal gland, and gene expression were recorded. Survival of bees exposed to amitraz, coumaphos, fluvalinate, chlorpyrifos, and chlorothalonil was the most sensitive endpoint despite observed changes in many developmental and physiological parameters across the seven pesticides. Our findings suggest that pesticide exposure during larvae development may affect the survival and health of immature honey bees, thus contributing to overall colony stress or loss. Additionally, pesticide exposure altered gene expression of detoxification enzymes. However, the tested exposure scenario is unlikely to be representative of real-world conditions but emphasizes the importance of proper hive management to minimize pesticide contamination of the hive environment or simulates a future scenario of increased contamination.


Asunto(s)
Abejas/fisiología , Contaminantes Ambientales/toxicidad , Plaguicidas/toxicidad , Animales , Cloropirifos , Cumafos , Fungicidas Industriales/toxicidad , Herbicidas/toxicidad , Inactivación Metabólica , Insecticidas/toxicidad , Larva/efectos de los fármacos , Neonicotinoides , Nitrilos , Nitrocompuestos , Polen/efectos de los fármacos , Piretrinas , Toluidinas
6.
PLoS One ; 14(6): e0217294, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31188840

RESUMEN

For honey bees (Apis mellifera), colony maintenance and growth are highly dependent on worker foragers obtaining sufficient resources from flowering plants year round. Despite the importance of floral diversity for proper bee nutrition, urban development has drastically altered resource availability and diversity for these important pollinators. Therefore, understanding the floral resources foraged by bees in urbanized areas is key to identifying and promoting plants that enhance colony health in those environments. In this study, we identified the pollen foraged by bees in four developed areas of the U.S., and explored whether there were spatial or temporal differences in the types of floral sources of pollen used by honey bees in these landscapes. To do this, pollen was collected every month for up to one year from colonies located in developed (urban and suburban) sites in California, Texas, Florida, and Michigan, except during months of pollen dearth or winter. Homogenized pollen samples were acetolyzed and identified microscopically to the lowest taxonomic level possible. Once identified, each pollen type was classified into a frequency category based on its overall relative abundance. Species richness and diversity indices were also calculated and compared across states and seasons. We identified up to 64 pollen types belonging to 39 plant families in one season (California). Species richness was highest in CA and lowest in TX, and was highest during spring in every state. In particular, "predominant" and "secondary" pollen types belonged to the families Arecaceae, Sapindaceae, Anacardiaceae, Apiaceae, Asteraceae, Brassicaceae, Fabaceae, Fagaceae, Lythraceae, Myrtaceae, Rhamnaceae, Rosaceae, Rutaceae, Saliaceae, and Ulmaceae. This study will help broaden our understanding of honey bee foraging ecology and nutrition in urban environments, and will help promote the use of plants that serve the dual purpose of providing aesthetic value and nutritious forage for honey bee colonies placed in developed landscapes.


Asunto(s)
Abejas/metabolismo , Plantas/metabolismo , Polen/metabolismo , Animales , California , Clima , Ecología , Florida , Flores/metabolismo , Michigan , Polinización/fisiología , Estaciones del Año , Texas , Estados Unidos
7.
J Econ Entomol ; 112(1): 60-66, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30388242

RESUMEN

Beekeepers commonly supplement honey bee (Apis mellifera L.) colonies' nutrition with commercial pollen and nectar substitutes in an effort to encourage growth and reduce colony losses. However, there is a broad lack of understanding regarding the extent to which supplemental protein feeding affects honey bee colony health. We conducted a field study to determine if feeding protein substitutes affected colony strength and Nosema spp. spore intensity in commercially managed honey bee colonies. Seventy-five honey bee colonies were randomly assigned to one of six treatments (no supplemental protein, one of four commercially available protein supplements, or wildflower pollen supplement). The number of adult bees, the number of capped brood cells, and Nosema intensity were assessed prior to-, 4 wk post-, and 8 wk post-treatment. There was an overall decrease in Nosema intensity across all treatments over time. However, there were no statistically detectable differences in colony strength or Nosema intensity between any of the pollen feeding treatments and those of the negative control treatment. Thus far, multiple investigations regarding supplemental protein feeding have failed to provide a clear consensus on the impact that this practice has on honey bee colony strength or productivity. Additional research is needed to determine the impact, if any, that diet supplementation, including microbial and nutritional supplements, has on colony health, to better inform beekeepers' management decisions.


Asunto(s)
Abejas/fisiología , Proteínas en la Dieta , Suplementos Dietéticos , Interacciones Huésped-Patógeno , Nosema/fisiología , Animales , Abejas/microbiología
8.
Ecotoxicol Environ Saf ; 149: 211-216, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29175348

RESUMEN

Methionine is an essential/indispensible amino acid nutrient required by adult and larval honey bees (Apis mellifera L. [Hymenoptera: Apidae]). Bees are unable to rear broods on pollen deficient in methionine, and reportedly behaviorally avoid collecting pollen or nectar from florets deficient in methioinine. In contrast, it has been demonstrated that methionine is toxic to certain pest insects; thus it has been proposed as an effective biopesticide. As an ecofriendly integrated pest management agent, methionine boasts a novel mode of action differentiating it from conventional pesticides, while providing non-target safety. Pesticides that minimize collateral effects on bees are desirable, given the economic and ecological concerns about honey bee health. The aim of the present study was to assess the potential impact of the biopesticide methionine on non-target adult and larval honey bees. Acute contact adult toxicology bioassays, oral adult assessments and chronic larval toxicity assessments were performed as per U.S. Environmental Protection Agency (EPA) requirements. Our results demonstrated that methionine fits the U.S. EPA category of practically nontoxic (i.e. lethal dose to 50% mortality or LD50 > 11µg/bee) to adult honey bees. The contact LD50 was > 25µg/bee and the oral LD50 was > 100µg/bee. Mortality was observed in larval bees that ingested DL-methionine (effective concentration to 50% mortality or EC50 560µg/bee). Therefore, we conclude that methionine poses little threat to the health of the honey bee, due to unlikely exposure at concentrations shown to elicit toxic effects.


Asunto(s)
Abejas/efectos de los fármacos , Agentes de Control Biológico/toxicidad , Larva/efectos de los fármacos , Metionina/toxicidad , Animales , Dosificación Letal Mediana , Pruebas de Toxicidad
10.
Exp Appl Acarol ; 68(4): 509-15, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26704261

RESUMEN

Varroa destructor Anderson & Trueman (Varroa) is a damaging pest of the Western honey bee, Apis mellifera, in North America, Europe, and Asia. However, Varroa infestations have not produced equivalent colony losses of African subspecies of honey bee throughout Africa and parts of the Americas. We surveyed the Varroa infestation rates (number of Varroa per 100 adult honey bees) in colonies of A. m. scutellata, A. m. capensis, and hybrids of the two subspecies throughout the Republic of South Africa in the fall of 2014. We found that A. m. scutellata colonies had significantly higher Varroa infestations than did A. m. capensis colonies. Furthermore, hybridized colonies of the two subspecies had Varroa infestations intermediate to those of A. m. scutellata and A. m. capensis. This is the first documentation of a clear difference in Varroa infestation rates of A. m. scutellata, A. m. capensis, and hybridized colonies in South Africa. Furthermore, our data confirm that Varroa populations in A. m. scutellata colonies are within the range of populations that are damaging to European honey bees.


Asunto(s)
Abejas/parasitología , Varroidae/fisiología , Animales , Apicultura , Estaciones del Año , Sudáfrica , Especificidad de la Especie
11.
PLoS One ; 10(7): e0132014, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26226229

RESUMEN

Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.


Asunto(s)
Abejas/microbiología , Suplementos Dietéticos/estadística & datos numéricos , Nosema/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo , Animales , Dieta , Polen
12.
J Insect Physiol ; 71: 177-90, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25450567

RESUMEN

Populations of pollinators are in decline worldwide. These declines are best documented in honey bees and are due to a combination of stressors. In particular, pesticides have been linked to decreased longevity and performance in honey bees; however, the molecular and physiological pathways mediating sensitivity and resistance to pesticides are not well characterized. We explored the impact of coumaphos and fluvalinate, the two most abundant and frequently detected pesticides in the hive, on genome-wide gene expression patterns of honey bee workers. We found significant changes in 1118 transcripts, including genes involved in detoxification, behavioral maturation, immunity, and nutrition. Since behavioral maturation is regulated by juvenile hormone III (JH), we examined effects of these miticides on hormone titers; while JH titers were unaffected, titers of methyl farnesoate (MF), the precursor to JH, were decreased. We further explored the association between nutrition- and pesticide-regulated gene expression patterns and demonstrated that bees fed a pollen-based diet exhibit reduced sensitivity to a third pesticide, chlorpyrifos. Finally, we demonstrated that expression levels of several of the putative pesticide detoxification genes identified in our study and previous studies are also upregulated in response to pollen feeding, suggesting that these pesticides and components in pollen modulate similar molecular response pathways. Our results demonstrate that pesticide exposure can substantially impact expression of genes involved in several core physiological pathways in honey bee workers. Additionally, there is substantial overlap in responses to pesticides and pollen-containing diets at the transcriptional level, and subsequent analyses demonstrated that pollen-based diets reduce workers' pesticide sensitivity. Thus, providing honey bees and other pollinators with high quality nutrition may improve resistance to pesticides.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Abejas/efectos de los fármacos , Abejas/genética , Cumafos/toxicidad , Genoma de los Insectos/efectos de los fármacos , Insecticidas/toxicidad , Nitrilos/toxicidad , Piretrinas/toxicidad , Animales , Abejas/fisiología , Dieta , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo
13.
PLoS One ; 9(1): e77547, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416121

RESUMEN

Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax--fluvalinate, coumaphos, chlorothalonil, and chloropyrifos--tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common 'inert' ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.


Asunto(s)
Abejas/efectos de los fármacos , Ambiente , Plaguicidas/toxicidad , Solventes/química , Administración Oral , Animales , Cloropirifos/toxicidad , Cumafos/toxicidad , Dieta , Sinergismo Farmacológico , Miel , Larva/efectos de los fármacos , Pirrolidinonas/toxicidad
14.
PLoS One ; 7(7): e40848, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815841

RESUMEN

BACKGROUND: Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. METHODOLOGY/PRINCIPAL FINDINGS: An improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. CONCLUSIONS/SIGNIFICANCE: A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions. Organosilicone spray adjuvants may therefore contribute to the ongoing global decline in honey bee health.


Asunto(s)
Agricultura , Abejas/efectos de los fármacos , Abejas/fisiología , Miel , Insecticidas/toxicidad , Aprendizaje/efectos de los fármacos , Administración Oral , Animales , Antenas de Artrópodos/efectos de los fármacos , Exposición a Riesgos Ambientales , Compuestos de Organosilicio/farmacología , Reflejo/efectos de los fármacos , Tensoactivos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...