Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pancreatology ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38719756

RESUMEN

BACKGROUND: Versican is a large extracellular matrix (ECM) proteoglycan with four isoforms V0-3. Elevated V0/V1 levels in breast cancer and glioma regulate cell migration and proliferation, but the role of versican in pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS: In this study, we evaluated the expression levels of versican isoforms, as well as their cellular source and interacting partners, in vivo, in human and mouse primary and metastatic PDAC tumours and in vitro, in pancreatic tumour cells and fibroblasts using immunostaining, confocal microscopy and qPCR techniques. We also investigated the effect of versican expression on fibroblast proliferation and migration using genetic and pharmacological approaches. RESULTS: We found that versican V0/V1 is highly expressed by cancer-associated fibroblasts (CAFs) in mouse and human primary and metastatic PDAC tumours. Our data also show that exposing fibroblasts to tumour-conditioned media upregulates V0 and V1 expressions, while Verbascoside (a CD44 inhibitor) downregulates V0/V1 expression. Importantly, V0/V1 knockdown significantly inhibits fibroblast proliferation. Mechanistically, we found that inhibiting hyaluronan synthesis does not affect versican co-localisation with CD44 in fibroblasts. CONCLUSION: CAFs express high levels of versican V0/V1 in primary and liver metastatic PDAC tumours and versican V0/V1 supports fibroblast proliferation.

2.
Nat Commun ; 15(1): 3593, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678021

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease for which better therapies are urgently needed. Fibroblasts and macrophages are heterogeneous cell populations able to enhance metastasis, but the role of a macrophage-fibroblast crosstalk in regulating their pro-metastatic functions remains poorly understood. Here we deconvolve how macrophages regulate metastasis-associated fibroblast (MAF) heterogeneity in the liver. We identify three functionally distinct MAF populations, among which the generation of pro-metastatic and immunoregulatory myofibroblastic-MAFs (myMAFs) critically depends on macrophages. Mechanistically, myMAFs are induced through a STAT3-dependent mechanism driven by macrophage-derived progranulin and cancer cell-secreted leukaemia inhibitory factor (LIF). In a reciprocal manner, myMAF secreted osteopontin promotes an immunosuppressive macrophage phenotype resulting in the inhibition of cytotoxic T cell functions. Pharmacological blockade of STAT3 or myMAF-specific genetic depletion of STAT3 restores an anti-tumour immune response and reduces metastases. Our findings provide molecular insights into the complex macrophage-fibroblast interactions in tumours and reveal potential targets to inhibit PDAC liver metastasis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Macrófagos , Neoplasias Pancreáticas , Factor de Transcripción STAT3 , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Animales , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Humanos , Ratones , Línea Celular Tumoral , Transducción de Señal , Quinasas Janus/metabolismo , Ratones Endogámicos C57BL , Fibroblastos/metabolismo , Fibroblastos/patología , Masculino , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Femenino
4.
Cancer Res ; 84(4): 527-544, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356443

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease, yet effective treatments to inhibit PDAC metastasis are lacking. The rich PDAC tumor microenvironment plays a major role in disease progression. Macrophages are the most abundant immune cell population in PDAC tumors and can acquire a range of functions that either hinder or promote tumor growth and metastasis. Here, we identified that mesothelin secretion by pancreatic cancer cells co-opts macrophages to support tumor growth and metastasis of cancer cells to the lungs, liver, and lymph nodes. Mechanistically, secretion of high levels of mesothelin by metastatic cancer cells induced the expression of VEGF alpha (VEGFA) and S100A9 in macrophages. Macrophage-derived VEGFA fed back to cancer cells to support tumor growth, and S100A9 increased neutrophil lung infiltration and formation of neutrophil extracellular traps. These results reveal a role for mesothelin in regulating macrophage functions and interaction with neutrophils to support PDAC metastasis. SIGNIFICANCE: Mesothelin secretion by cancer cells supports pancreatic cancer metastasis by inducing macrophage secretion of VEGFA and S100A9 to support cancer cell proliferation and survival, recruit neutrophils, and stimulate neutrophil extracellular trap formation. See related commentary by Alewine, p. 513.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Mesotelina , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Macrófagos/metabolismo , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral/fisiología
5.
Nat Cancer ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355776

RESUMEN

Pancreatic ductal adenocarcinoma is a highly metastatic disease and macrophages support liver metastases. Efferocytosis, or engulfment of apoptotic cells by macrophages, is an essential process in tissue homeostasis and wound healing, but its role in metastasis is less well understood. Here, we found that the colonization of the hepatic metastatic site is accompanied by low-grade tissue injury and that efferocytosis-mediated clearance of parenchymal dead cells promotes macrophage reprogramming and liver metastasis. Mechanistically, progranulin expression in macrophages is necessary for efficient efferocytosis by controlling lysosomal acidification via cystic fibrosis transmembrane conductance regulator and the degradation of lysosomal cargo, resulting in LXRα/RXRα-mediated macrophage conversion and upregulation of arginase 1. Pharmacological blockade of efferocytosis or macrophage-specific genetic depletion of progranulin impairs macrophage conversion, improves CD8+ T cell functions, and reduces liver metastasis. Our findings reveal how hard-wired functions of macrophages in tissue repair contribute to liver metastasis and identify potential targets for prevention of pancreatic ductal adenocarcinoma liver metastasis.

6.
Curr Res Neurobiol ; 4: 100087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397814

RESUMEN

Developing optogenetic methods for research in non-human primates (NHP) is important for translational neuroscience and for delineating brain function with unprecedented specificity. Here we assess, in macaque monkeys, the selectivity by which optogenetic stimulation of the primary visual cortex (V1) drives the local laminar and widespread cortical connectivity related to visual perception. Towards this end, we transfected neurons with light-sensitive channelrhodopsin in dorsal V1. fMRI revealed that optogenetic stimulation of V1 using blue light at 40 Hz increased functional activity in the visual association cortex, including areas V2/V3, V4, motion-sensitive area MT and frontal eye fields, although nonspecific heating and eye movement contributions to this effect could not be ruled out. Neurophysiology and immunohistochemistry analyses confirmed optogenetic modulation of spiking activity and opsin expression with the strongest expression in layer 4-B in V1. Stimulating this pathway during a perceptual decision task effectively elicited a phosphene percept in the receptive field of the stimulated neurons in one monkey. Taken together, our findings demonstrate the great potential of optogenetic methods to drive the large-scale cortical circuits of the primate brain with high functional and spatial specificity.

7.
Curr Res Neurobiol ; 3: 100049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518342

RESUMEN

Studying higher brain function presents fundamental scientific challenges but has great potential for impactful translation to the clinic, supporting the needs of many patients suffering from conditions that relate to neuronal dysfunction. For many key questions relevant to human neurological conditions and clinical interventions, non-human primates (NHPs) remain the only suitable model organism and the only effective way to study the relationship between brain structure and function with the knowledge and tools currently available. Here we present three exemplary studies of current research yielding important findings that are directly translational to human clinical patients but which would be impossible without NHP studies. Our first example shows how studies of the NHP prefrontal cortex are leading to clinically relevant advances and potential new treatments for human neuropsychiatric disorders such as depression and anxiety. Our second example looks at the relevance of NHP research to our understanding of visual pathways and the visual cortex, leading to visual prostheses that offer treatments for otherwise blind patients. Finally, we consider recent advances in treatments leading to improved recovery of movement and motor control in stroke patients, resulting from our improved understanding of brain stem parallel pathways involved in movement in NHPs. The case for using NHPs in neuroscience research, and the direct benefits to human patients, is strong but has rarely been set out directly. This paper reviews three very different areas of neuroscience research, expressly highlighting the unique insights offered to each by NHP studies and their direct applicability to human clinical conditions.

8.
Cell Rep ; 40(12): 111392, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130494

RESUMEN

Neuronal activity in visual area V4 is well known to be modulated by selective attention, and there are reports on V4 lesions leading to attentional deficits. However, it remains unclear whether V4 microstimulation can elicit attentional benefits. To test this hypothesis, we performed local microstimulation in area V4 and explored its spatial and time dynamics in two macaque monkeys performing a visual detection task. Microstimulation was delivered via chronically implanted multi-electrode arrays. We found that microstimulation increases average performance by 35% and reduces luminance detection thresholds by -30%. This benefit critically depends on the onset of microstimulation relative to the stimulus, consistent with known dynamics of endogenous attention. These results show that local microstimulation of V4 can improve behavior and highlight the critical role of V4 for attention.


Asunto(s)
Corteza Visual , Animales , Macaca mulatta , Neuronas , Estimulación Luminosa/métodos , Visión Ocular , Corteza Visual/fisiología , Percepción Visual
9.
Nat Commun ; 13(1): 1768, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365657

RESUMEN

Myeloid cells play key roles in cancer immune suppression and tumor progression. In response to tumor derived factors, circulating monocytes and granulocytes extravasate into the tumor parenchyma where they stimulate angiogenesis, immune suppression and tumor progression. Chemokines, cytokines and interleukins stimulate PI3Kγ-mediated Rap1 activation, leading to conformational changes in integrin α4ß1 that promote myeloid cell extravasation and tumor inflammation Here we show that PI3Kγ activates a high molecular weight form of myosin light chain kinase, MLCK210, that promotes myosin-dependent Rap1 GTP loading, leading to integrin α4ß1 activation. Genetic or pharmacological inhibition of MLCK210 suppresses integrin α4ß1 activation, as well as tumor inflammation and progression. These results demonstrate a critical role for myeloid cell MLCK210 in tumor inflammation and serve as basis for the development of alternative approaches to develop immune oncology therapeutics.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Quinasa de Cadena Ligera de Miosina , Neoplasias , Adhesión Celular/fisiología , Humanos , Inflamación , Peso Molecular , Células Mieloides/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Neoplasias/genética
10.
Front Neurosci ; 16: 757091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153666

RESUMEN

In the adult visual system, topographic reorganization of the primary visual cortex (V1) after retinal lesions has been extensively investigated. In contrast, the plasticity of higher order extrastriate areas following retinal lesions is less well studied. Here, we used fMRI to study reorganization of visual areas V2/V3 following the induction of permanent, binocular, homonymous retinal lesions in 4 adult macaque monkeys. We found that the great majority of voxels that did not show visual modulation on the day of the lesion in the V2/V3 lesion projection zone (LPZ) demonstrated significant visual modulations 2 weeks later, and the mean modulation strength remained approximately stable thereafter for the duration of our observations (4-5 months). The distribution of eccentricities of visually modulated voxels inside the V2/V3 LPZ spanned a wider range post-lesion than pre-lesion, suggesting that neurons inside the LPZ reorganize by receiving input either from the foveal or the peripheral border of the LPZ, depending on proximity. Overall, we conclude that area V2/V3 of adult rhesus macaques displays a significant capacity for topographic reorganization following retinal lesions markedly exceeding the corresponding capacity of area V1.

11.
Gut ; 71(11): 2284-2299, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35022267

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease and cytotoxic chemotherapy is the standard of care treatment for patients with advanced disease. Here, we investigate how the microenvironment in PDAC liver metastases reacts to chemotherapy and its role in metastatic disease progression post-treatment, an area which is poorly understood. DESIGN: The impact of chemotherapy on metastatic disease progression and immune cell infiltrates was characterised using flow and mass cytometry combined with transcriptional and histopathological analysis in experimental PDAC liver metastases mouse models. Findings were validated in patient derived liver metastases and in an autochthonous PDAC mouse model. Human and murine primary cell cocultures and ex vivo patient-derived liver explants were deployed to gain mechanistical insights on whether and how chemotherapy affects the metastatic tumour microenvironment. RESULTS: We show that in vivo, chemotherapy induces an initial infiltration of proinflammatory macrophages into the liver and activates cytotoxic T cells, leading only to a temporary restraining of metastatic disease progression. However, after stopping treatment, neutrophils are recruited to the metastatic liver via CXCL1 and 2 secretion by metastatic tumour cells. These neutrophils express growth arrest specific 6 (Gas6) which leads to AXL receptor activation on tumour cells enabling their regrowth. Disruption of neutrophil infiltration or inhibition of the Gas6/AXL signalling axis in combination with chemotherapy inhibits metastatic growth. Chemotherapy increases Gas6 expression in circulating neutrophils from patients with metastatic pancreatic cancer and recombinant Gas6 is sufficient to promote tumour cell proliferation ex vivo, in patient-derived metastatic liver explants. CONCLUSION: Combining chemotherapy with Gas6/AXL or neutrophil targeted therapy could provide a therapeutic benefit for patients with metastatic pancreatic cancer.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intercelular , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones , Metástasis de la Neoplasia , Neutrófilos/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Eur J Neurosci ; 55(11-12): 3010-3024, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34643973

RESUMEN

Sampling of information is thought to be an important aspect of explorative behaviour. Evidence for it has been gained in behavioural assessments of a variety of overt and covert cognitive domains, including sensation, attention, memory, eye movements and dexterity. A common aspect across many findings is that sampling tends to exhibit a rhythmicity at low frequencies (theta, 4-8 Hz; alpha, 9-12 Hz). Neurophysiological investigations in a wide range of species, including rodents, non-human primates and humans have demonstrated the presence of sampling related neural oscillations in a number of brain areas ranging from early sensory cortex, hippocampus to high-level cognitive areas. However, to assess whether rhythmic sampling represents a general aspect of exploratory behaviour one must critically evaluate the task parameters, and their potential link with neural oscillations. Here we focus on sampling during attentive vision to present an overview on the experimental conditions that are used to investigate rhythmic sampling and associated oscillatory brain activity in this domain. This review aims to (1) provide guidelines to efficiently quantify behavioural rhythms, (2) compare results from human and non-human primate studies and (3) argue that the underlying neural mechanisms of sampling can co-occur in both sensory and high-level areas.


Asunto(s)
Atención , Periodicidad , Animales , Atención/fisiología , Encéfalo/fisiología , Hipocampo , Primates
13.
Front Neurosci ; 15: 663242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966251

RESUMEN

Small fixational eye-movements are a fundamental aspect of vision and thought to reflect fine shifts in covert attention during active viewing. While the perceptual benefits of these small eye movements have been demonstrated during a wide range of experimental tasks including during free viewing, their function during reading remains surprisingly unclear. Previous research demonstrated that readers with increased microsaccade rates displayed longer reading speeds. To what extent increased fixational eye movements are, however, specific to reading and might be indicative of reading skill deficits remains, however, unknown. To address this topic, we compared the eye movement scan paths of 13 neurotypical individuals and 13 subjects diagnosed with developmental dyslexia during short story reading and free viewing of natural scenes. We found that during reading only, dyslexics tended to display small eye movements more frequently compared to neurotypicals, though this effect was not significant at the population level, as it could also occur in slow readers not diagnosed as dyslexics. In line with previous research, neurotypical readers had twice as many regressive compared to progressive microsaccades, which did not occur during free viewing. In contrast, dyslexics showed similar amounts of regressive and progressive small fixational eye movements during both reading and free viewing. We also found that participants with smaller fixational saccades from both neurotypical and dyslexic samples displayed reduced reading speeds and lower scores during independent tests of reading skill. Slower readers also displayed greater variability in the landing points and temporal occurrence of their fixational saccades. Both the rate and spatio-temporal variability of fixational saccades were associated with lower phonemic awareness scores. As none of the observed differences between dyslexics and neurotypical readers occurred during control experiments with free viewing, the reported effects appear to be directly related to reading. In summary, our results highlight the predictive value of small saccades for reading skill, but not necessarily for developmental dyslexia.

14.
Neuroimage ; 244: 118615, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563680

RESUMEN

Natural vision engages a wide range of higher-level regions that integrate visual information over the large-scale brain network. How interareal connectivity reconfigures during the processing of ongoing natural visual scenes and how these dynamic functional changes relate to the underlaying anatomical links between regions is not well understood. Here, we hypothesized that macaque visual brain regions are poly-functional sharing the capacity to change their configuration state depending on the nature of visual input. To address this hypothesis, we reconstructed networks from in-vivo diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) data obtained in four alert macaque monkeys viewing naturalistic movie scenes. At first, we characterized network properties and found greater interhemispheric density and greater inter-subject variability in free-viewing networks as compared to structural networks. From the structural connectivity, we then captured modules on which we identified hubs during free-viewing that formed a widespread visuo-saccadic network across frontal (FEF, 46v), parietal (LIP, Tpt), and occipitotemporal modules (MT, V4, TEm), and that excluded primary visual cortex. Inter-subject variability of well-connected hubs reflected subject-specific configurations that largely recruited occipito-parietal and frontal modules. Across the cerebral hemispheres, free-viewing networks showed higher correlations among long-distance brain regions as compared to structural networks. From these findings, we hypothesized that long-distance interareal connectivity could reconfigure depending on the ongoing changes in visual scenes. Testing this hypothesis by applying temporally resolved functional connectivity we observed that many structurally defined areas (such as areas V4, MT/MST and LIP) were poly-functional as they were recruited as hub members of multiple network states that changed during the presentation of scenes containing objects, motion, faces, and actions. We suggest that functional flexibility in macaque macroscale brain networks is required for the efficient interareal communication during active natural vision. To further promote the use of naturalistic free-viewing paradigms and increase the development of macaque neuroimaging resources, we share our datasets in the PRIME-DE consortium.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Visual/diagnóstico por imagen , Animales , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Femenino , Macaca , Imagen por Resonancia Magnética , Estimulación Luminosa
15.
eNeuro ; 8(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33495241

RESUMEN

The lateral geniculate nucleus (LGN) of the dorsal thalamus is the primary recipient of the two eyes' outputs. Most LGN neurons are monocular in that they are activated by visual stimulation through only one (dominant) eye. However, there are both intrinsic connections and inputs from binocular structures to the LGN that could provide these neurons with signals originating from the other (non-dominant) eye. Indeed, previous work introducing luminance differences across the eyes or using a single-contrast stimulus showed binocular modulation for single unit activity in anesthetized macaques and multiunit activity in awake macaques. Here, we sought to determine the influence of contrast viewed by both the non-dominant and dominant eyes on LGN single-unit responses in awake macaques. To do this, we adjusted each eye's signal strength by independently varying the contrast of stimuli presented to the two eyes. Specifically, we recorded LGN single unit spiking activity in two awake macaques while they viewed drifting gratings of varying contrast. We found that LGN neurons of all types [parvocellular (P), magnocellular (M), and koniocellular (K)] were significantly suppressed when stimuli were presented at low contrast to the dominant eye and at high contrast to the non-dominant eye. Further, the inputs of the two eyes showed antagonistic interaction, whereby the magnitude of binocular suppression diminished with high contrast in the dominant eye, or low contrast in the non-dominant eye. These results suggest that the LGN represents a site of precortical binocular processing involved in resolving discrepant contrast differences between the eyes.


Asunto(s)
Cuerpos Geniculados , Macaca , Animales , Neuronas , Estimulación Luminosa , Retina
16.
J Neurosci Methods ; 348: 108992, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33130051

RESUMEN

BACKGROUND: Neuroscience studies with macaque monkeys may require cranial implants to stabilize the head or gain access to the brain for scientific purposes. Wound management that promotes healing after the cranial implant surgery in non-human primates can be difficult as it is not necessarily possible to cover the wound margins. NEW METHOD: Here, we developed an easily modifiable head cap that protects the sutured skin margins after cranial implant surgery and contributes to wound healing. The protective head cap was developed in response to monkeys picking at sutured skin margins around an implant, complicating healing. The user-friendly protective cap, made from Klarity- R™ Sheet (3.2 mm thick with 36 % or 42 % perforation) is affixed to the implant post-surgically. Once secured and while the monkey is still anesthetized, the plastic sheeting is molded around the implant. The protective head cap restricts the monkey's finger access to its' wound margins while allowing air to circulate to promote wound healing. RESULTS AND COMPARISON WITH EXISTING METHODS: Across two UK primate facilities, the protective head cap promoted wound healing. In monkeys that did not wear the head cap, re-suturing was necessary in ∼30 % of cases. In contrast, none of the monkeys that wore the head cap required re-suturing. The monkeys wearing the head cap also had reduced numbers of days of prescribed antibiotics and analgesia. CONCLUSION: This bespoken, easily adaptable, protective head cap supports postoperative wound healing, and enhances the welfare of monkeys involved in neuroscience research.


Asunto(s)
Prótesis e Implantes , Cráneo , Animales , Encéfalo , Cabeza , Macaca mulatta , Cráneo/cirugía
17.
Curr Biol ; 31(3): 635-642.e3, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33278356

RESUMEN

Theta (3-9 Hz) and gamma (30-100 Hz) oscillations have been observed at different levels along the hierarchy of cortical areas and across a wide set of cognitive tasks. In the visual system, the emergence of both rhythms in primary visual cortex (V1) and mid-level cortical areas V4 has been linked with variations in perceptual reaction times.1-5 Based on analytical methods to infer causality in neural activation patterns, it was concluded that gamma and theta oscillations might both reflect feedforward sensory processing from V1 to V4.6-10 Here, we report on experiments in macaque monkeys in which we experimentally assessed the presence of both oscillations in the neural activity recorded from multi-electrode arrays in V1 and V4 before and after a permanent V1 lesion. With intact cortex, theta and gamma oscillations could be reliably elicited in V1 and V4 when monkeys viewed a visual contour illusion and showed phase-to-amplitude coupling. Laminar analysis in V1 revealed that both theta and gamma oscillations occurred primarily in the supragranular layers, the cortical output compartment of V1. However, there was a clear dissociation between the two rhythms in V4 that became apparent when the major feedforward input to V4 was removed by lesioning V1: although V1 lesioning eliminated V4 theta, it had little effect on V4 gamma power except for delaying its emergence by >100 ms. These findings suggest that theta is more tightly associated with feedforward processing than gamma and pose limits on the proposed role of gamma as a feedforward mechanism.


Asunto(s)
Corteza Visual Primaria , Animales , Macaca , Estimulación Luminosa , Tiempo de Reacción
18.
Cereb Cortex ; 30(9): 4871-4881, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32350517

RESUMEN

In order for organisms to survive, they need to detect rewarding stimuli, for example, food or a mate, in a complex environment with many competing stimuli. These rewarding stimuli should be detected even if they are nonsalient or irrelevant to the current goal. The value-driven theory of attentional selection proposes that this detection takes place through reward-associated stimuli automatically engaging attentional mechanisms. But how this is achieved in the brain is not very well understood. Here, we investigate the effect of differential reward on the multiunit activity in visual area V4 of monkeys performing a perceptual judgment task. Surprisingly, instead of finding reward-related increases in neural responses to the perceptual target, we observed a large suppression at the onset of the reward indicating cues. Therefore, while previous research showed that reward increases neural activity, here we report a decrease. More suppression was caused by cues associated with higher reward than with lower reward, although neither cue was informative about the perceptually correct choice. This finding of reward-associated neural suppression further highlights normalization as a general cortical mechanism and is consistent with predictions of the value-driven attention theory.


Asunto(s)
Atención/fisiología , Señales (Psicología) , Recompensa , Corteza Visual/fisiología , Animales , Macaca mulatta , Masculino , Estimulación Luminosa
19.
Front Immunol ; 11: 297, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174917

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers due to its aggressive and metastatic nature. PDA is characterized by a rich tumor stroma with abundant macrophages, fibroblasts, and collagen deposition that can represent up to 90% of the tumor mass. Activation of the tyrosine kinase receptor AXL and expression of its ligand growth arrest-specific protein 6 (Gas6) correlate with a poor prognosis and increased metastasis in pancreatic cancer patients. Gas6 is a multifunctional protein that can be secreted by several cell types and regulates multiple processes, including cancer cell plasticity, angiogenesis, and immune cell functions. However, the role of Gas6 in pancreatic cancer metastasis has not been fully investigated. In these studies we find that, in pancreatic tumors, Gas6 is mainly produced by tumor associated macrophages (TAMs) and cancer associated fibroblasts (CAFs) and that pharmacological blockade of Gas6 signaling partially reverses epithelial-to-mesenchymal transition (EMT) of tumor cells and supports NK cell activation, thereby inhibiting pancreatic cancer metastasis. Our data suggest that Gas6 simultaneously acts on both the tumor cells and the NK cells to support pancreatic cancer metastasis. This study supports the rationale for targeting Gas6 in pancreatic cancer and use of NK cells as a potential biomarker for response to anti-Gas6 therapy.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Neoplasias Pancreáticas/patología , Animales , Fibroblastos Asociados al Cáncer/fisiología , Línea Celular Tumoral , Plasticidad de la Célula , Colágeno/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neovascularización Patológica/etiología , Neoplasias Pancreáticas/irrigación sanguínea , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Macrófagos Asociados a Tumores/fisiología , Tirosina Quinasa del Receptor Axl
20.
Vision Res ; 169: 41-48, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32172007

RESUMEN

Visual perception is often not homogenous across the visual field and can vary depending on situational demands. The reasons behind this inhomogeneity are not clear. Here we show that directing attention that is consistent with a western reading habit from left to right, results in a ~32% higher sensitivity to detect transient visual events in the right hemifield. This right visual field advantage was largely reduced in individuals with reading difficulties from developmental dyslexia. Similarly, visual detection became more symmetric in skilled readers, when attention was guided opposite to the reading pattern. Taken together, these findings highlight a higher sensitivity in the right visual field for detecting the onset of sudden visual events that is well accounted for by left hemisphere dominated reading habit.


Asunto(s)
Lectura , Percepción Visual , Atención , Humanos , Campos Visuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA