Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Angiogenesis ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709389

RESUMEN

BACKGROUND: Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation. METHODS: We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O2 from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O2 from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O2 with PBS (O2-PBS), O2 + IC100 intravitreal injection (O2-IC100-IVT), and O2 + IC100 intraperitoneal injection (O2-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR. RESULTS: ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signaling caused by O2. IC100 also corrected the suppression of genes associated with cell junction assembly, neuron projection, and neuron recognition caused by O2. CONCLUSION: These data demonstrate the crucial role of ASC in the pathogenesis of OIR and the efficacy of a humanized therapeutic anti-ASC antibody in treating OIR mice. Thus, this anti-ASC antibody may potentially be considered in diseases associated with oxygen stresses and retinopathy, such as ROP.

2.
Clin Perinatol ; 51(1): 21-43, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38325942

RESUMEN

Neonatal pulmonary hypertension (PH) is a devastating disorder of the pulmonary vasculature characterized by elevated pulmonary vascular resistance and mean pulmonary arterial pressure. Occurring predominantly because of maldevelopment or maladaptation of the pulmonary vasculature, PH in neonates is associated with suboptimal short-term and long-term outcomes because its pathobiology is unclear in most circumstances, and it responds poorly to conventional pulmonary vasodilators. Understanding the pathogenesis and pathophysiology of neonatal PH can lead to novel strategies and precise therapies. The review is designed to achieve this goal by summarizing pulmonary vascular development and the pathogenesis and pathophysiology of PH associated with maladaptation, bronchopulmonary dysplasia, and congenital diaphragmatic hernia based on evidence predominantly from preclinical studies. We also discuss the pros and cons of and provide future directions for preclinical studies in neonatal PH.


Asunto(s)
Displasia Broncopulmonar , Hernias Diafragmáticas Congénitas , Hipertensión Pulmonar , Recién Nacido , Humanos , Pulmón , Resistencia Vascular , Hernias Diafragmáticas Congénitas/terapia
3.
J Neuroinflammation ; 21(1): 16, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200558

RESUMEN

BACKGROUND: Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS: Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS: We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION: These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.


Asunto(s)
Corioamnionitis , Nacimiento Prematuro , Recién Nacido , Femenino , Lactante , Animales , Humanos , Embarazo , Proteínas Hedgehog , Macaca mulatta , Escherichia coli , Recien Nacido Prematuro , Cerebelo , ARN Nuclear Pequeño
4.
Sci Rep ; 13(1): 19538, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945645

RESUMEN

Neonatal hyperoxia induces long-term systemic vascular stiffness and cardiovascular remodeling, but the mechanisms are unclear. Chemokine receptor 7 (CXCR7) represents a key regulator of vascular homeostasis and repair by modulating TGF-ß1 signaling. This study investigated whether pharmacological CXCR7 agonism prevents neonatal hyperoxia-induced systemic vascular stiffness and cardiac dysfunction in juvenile rats. Newborn Sprague Dawley rat pups assigned to room air or hyperoxia (85% oxygen), received CXCR7 agonist, TC14012 or placebo for 3 weeks. These rat pups were maintained in room air until 6 weeks when aortic pulse wave velocity doppler, cardiac echocardiography, aortic and left ventricular (LV) fibrosis were assessed. Neonatal hyperoxia induced systemic vascular stiffness and cardiac dysfunction in 6-week-old rats. This was associated with decreased aortic and LV CXCR7 expression. Early treatment with TC14012, partially protected against neonatal hyperoxia-induced systemic vascular stiffness and improved LV dysfunction and fibrosis in juvenile rats by decreasing TGF-ß1 expression. In vitro, hyperoxia-exposed human umbilical arterial endothelial cells and coronary artery endothelial cells had increased TGF-ß1 levels. However, treatment with TC14012 significantly reduced the TGF-ß1 levels. These results suggest that dysregulation of endothelial CXCR7 signaling may contribute to neonatal hyperoxia-induced systemic vascular stiffness and cardiac dysfunction.


Asunto(s)
Hiperoxia , Disfunción Ventricular Izquierda , Animales , Humanos , Ratas , Animales Recién Nacidos , Células Endoteliales , Fibrosis , Hiperoxia/complicaciones , Análisis de la Onda del Pulso , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Remodelación Vascular
5.
J Neuroinflammation ; 20(1): 205, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679766

RESUMEN

BACKGROUND: Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain's inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found pharmacological inhibition of caspase-1, which blocks GSDMD activation, attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. METHODS: Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal days 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1) and CD68, markers of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. RESULTS: Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure did not increase AIF1 + , CD68 + , or TUNEL + cell numbers or decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air-exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, hypoxia-induced factor 1 pathway, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. CONCLUSIONS: GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.


Asunto(s)
Lesiones Encefálicas , Hiperoxia , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Técnicas de Inactivación de Genes , Hipocampo , Hiperoxia/complicaciones , Recien Nacido Prematuro , Ratones Noqueados , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros
6.
Front Pediatr ; 11: 1205882, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397144

RESUMEN

Extracellular vesicles (EVs) are a heterogeneous group of nano-sized membranous structures increasingly recognized as mediators of intercellular and inter-organ communication. EVs contain a cargo of proteins, lipids and nucleic acids, and their cargo composition is highly dependent on the biological function of the parental cells. Their cargo is protected from the extracellular environment by the phospholipid membrane, thus allowing for safe transport and delivery of their intact cargo to nearby or distant target cells, resulting in modification of the target cell's gene expression, signaling pathways and overall function. The highly selective, sophisticated network through which EVs facilitate cell signaling and modulate cellular processes make studying EVs a major focus of interest in understanding various biological functions and mechanisms of disease. Tracheal aspirate EV-miRNA profiling has been suggested as a potential biomarker for respiratory outcome in preterm infants and there is strong preclinical evidence showing that EVs released from stem cells protect the developing lung from the deleterious effects of hyperoxia and infection. This article will review the role of EVs as pathogenic messengers, biomarkers, and potential therapies for neonatal lung diseases.

7.
Res Sq ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37398125

RESUMEN

Background: Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain's inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found inhibition of GSDMD activation attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. Methods: Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal day 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1), a marker of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. Results: Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure failed to increase either AIF1+ or TUNEL+ cell numbers, nor decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air- exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, and core development pathways hypoxia-induced factor 1, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. Conclusion: GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.

8.
Front Pediatr ; 11: 1144230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287630

RESUMEN

Vertical transmission of SARS-CoV-2 from mother to fetus is widely accepted. Whereas most infected neonates present with mild symptoms or are asymptomatic, respiratory distress syndrome (RDS) and abnormal lung images are significantly more frequent in COVID-19 positive neonates than in non-infected newborns. Fatality is rare and discordant meta-analyses of case reports and series relating perinatal maternal COVID-19 status to neonatal disease severity complicate their extrapolation as prognostic indicators. A larger database of detailed case reports from more extreme cases will be required to establish therapeutic guidelines and allow informed decision making. Here we report an unusual case of a 28 weeks' gestation infant with perinatally acquired SARS-CoV-2, who developed severe protracted respiratory failure. Despite intensive care from birth with first line anti-viral and anti-inflammatory therapy, respiratory failure persisted, and death ensued at 5 months. Lung histopathology showed severe diffuse bronchopneumonia, and heart and lung immunohistochemistry confirmed macrophage infiltration, platelet activation and neutrophil extracellular trap formation consistent with late multisystem inflammation. To our knowledge, this is the first report of SARS CoV-2 pulmonary hyperinflammation in a preterm newborn with fatal outcome.

9.
Reprod Sci ; 30(11): 3222-3234, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37264260

RESUMEN

Despite widespread use, dosing regimens for antenatal corticosteroid (ACS) therapy are poorly unoptimized. ACS therapy exerts a programming effect on fetal development, which may be associated with an increased risk of cardiovascular disease. Having demonstrated that low-dose steroid therapy is an efficacious means of maturing the preterm lung, we hypothesized that a low-dose steroid exposure would exert fewer adverse functional and transcriptional changes on the fetal heart. We tested this hypothesis using low-dose steroid therapy (10 mg delivered to the ewe over 36 h via constant infusion) and compared cardiac effects with those of a higher dose treatment (30 mg delivered to the ewe over 24 h by intramuscular injection; simulating currently employed clinical ACS regimens). Fetal cardiac function was assessed by ultrasound on the day of ACS treatment initiation. Transcriptomic analyses were performed on fetal myocardial tissue. Relative to saline control, fetuses in the higher-dose clinical treatment group had significantly lower ratios between early diastolic ventricular filling and ventricular filling during atrial systole, and showed the differential expression of myocardial hypertrophy-associated transcripts including ßMHC, GADD45γ, and PPARγ. The long-term implications of these changes remain unstudied. Irrespective, optimizing ACS dosing regimens to maximize respiratory benefit while minimizing adverse effects on key organ systems, such as the heart, offers a means of improving the acute and long-term outcomes associated with this important obstetric therapy.


Asunto(s)
Betametasona , Cardiopatías , Ovinos , Femenino , Embarazo , Animales , Madurez de los Órganos Fetales , Corticoesteroides , Esteroides , Corazón Fetal/diagnóstico por imagen , Cardiopatías/tratamiento farmacológico
10.
Sci Rep ; 13(1): 143, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599874

RESUMEN

Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are among the most common morbidities affecting extremely premature infants who receive oxygen therapy. Many clinical studies indicate that BPD is associated with advanced ROP. However, the mechanistic link between hyperoxia, BPD, and ROP remains to be explored. Gasdermin D (GSDMD) is a key executor of inflammasome-induced pyroptosis and inflammation. Inhibition of GSDMD has been shown to attenuate hyperoxia-induced BPD and brain injury in neonatal mice. The objective of this study was to further define the mechanistic roles of GSDMD in the pathogenesis of hyperoxia-induced BPD and ROP in mouse models. Here we show that global GSDMD knockout (GSDMD-KO) protects against hyperoxia-induced BPD by reducing macrophage infiltration, improving alveolarization and vascular development, and decreasing cell death. In addition, GSDMD deficiency prevented hyperoxia-induced ROP by reducing vasoobliteration and neovascularization, improving thinning of multiple retinal tissue layers, and decreasing microglial activation. RNA sequencing analyses of lungs and retinas showed that similar genes, including those from inflammatory, cell death, tissue remodeling, and tissue and vascular developmental signaling pathways, were induced by hyperoxia and impacted by GSDMD-KO in both models. These data highlight the importance of GSDMD in the pathogenesis of BPD and ROP and suggest that targeting GSDMD may be beneficial in preventing and treating BPD and ROP in premature infants.


Asunto(s)
Displasia Broncopulmonar , Gasderminas , Retinopatía de la Prematuridad , Animales , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hipertensión Pulmonar/patología , Pulmón/patología , Proteínas de Unión a Fosfato/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Retinopatía de la Prematuridad/genética , Retinopatía de la Prematuridad/complicaciones , Gasderminas/genética , Gasderminas/metabolismo
11.
Front Cell Dev Biol ; 11: 1245747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38481391

RESUMEN

Background: Intra-amniotic inflammation (IAI) is associated with increased risk of preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by which IAI leads to preterm birth and BPD are poorly understood, and there are no effective therapies for preterm birth and BPD. The transcription factor c-Myc regulates various biological processes like cell growth, apoptosis, and inflammation. We hypothesized that c-Myc modulates inflammation at the maternal-fetal interface, and neonatal lung remodeling. The objectives of our study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in modulating inflammation at the maternal-fetal interface, and neonatal lung remodeling induced by IAI. Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1) Intra-amniotic saline injections only (control), 2) Intra-amniotic lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation, angiogenesis, immunohistochemistry, and transcriptomic analyses were performed on placenta and fetal membranes, and neonatal lungs to determine kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic c-Myc inhibition on lung remodeling at postnatal day 14. Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular trap (NET) formation in the placenta and fetal membranes, and neonatal lung remodeling with pulmonary hypertension consistent with a BPD phenotype. Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil infiltration and NET formation, and improved neonatal lung remodeling induced by LPS, with improved alveolarization, increased angiogenesis, and decreased pulmonary vascular remodeling. Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET formation in the placenta and fetal membranes. c-Myc also participates in neonatal lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as a potential therapeutic target for IAI and IAI-associated BPD.

12.
J Appl Physiol (1985) ; 133(5): 1031-1041, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36135955

RESUMEN

Adults born preterm have an increased risk of pulmonary vascular disease. Extreme preterm infants often require supplemental oxygen but they also exhibit frequent intermittent hypoxemic episodes (IH). Here, we test the hypothesis that neonatal IH induces lung endothelial cell mitochondrial DNA (mitDNA) damage and contributes to long-term pulmonary vascular disease and pulmonary hypertension (PH). Newborn C57BL/6J mice were assigned to the following groups: 1) normoxia, 2) hyperoxia (O2 65%), 3) normoxia cycling with IH (O2 21% + O2 10%), and 4) hyperoxia cycling with IH (O2 65% + O2 10%) for 3 wk. IH episodes were initiated on postnatal day 7. Lung angiogenesis, PH, and mitDNA lesions were assessed at 3 wk and 3 mo. In vitro, the effect of IH on tubule formation and mitDNA lesions was evaluated in human pulmonary microvascular endothelial cells (HPMECs). Data were analyzed by ANOVA. In vitro, IH exposure reduced tubule formation and increased mitDNA lesions in HPMECs. This was most marked in HPMECs exposed to hyperoxia cycling with IH. In vivo, neonatal IH increased lung mitDNA lesions, impaired angiogenesis, and induced PH in 3-wk-old mice. These findings were pronounced in mice exposed to hyperoxia cycling with IH. At 3 mo follow-up, mice exposed to neonatal IH had persistently increased lung mitDNA lesions and impaired lung angiogenesis, even without concomitant hyperoxia exposure. Neonatal IH induces lung endothelial cell mitDNA damage and causes persistent impairment in lung angiogenesis. These findings provide important mechanistic insight into the pathogenesis of pulmonary vascular disease in preterm survivors.NEW & NOTEWORTHY Our current study demonstrates that neonatal intermittent hypoxia (IH) alters lung endothelial cell function, induces mitochondrial DNA lesions, and impairs lung vascular growth into adulthood. Moreover, when superimposed on hyperoxia, neonatal IH induces a severe lung vascular phenotype that is seen in preterm infants with PH. These findings suggest that neonatal IH contributes to PH in adults born preterm and importantly, that mitochondrial protection strategies may mitigate these deleterious effects.


Asunto(s)
Hiperoxia , Hipertensión Pulmonar , Humanos , Recién Nacido , Lactante , Ratones , Animales , Adulto , Hiperoxia/complicaciones , Células Endoteliales/patología , ADN Mitocondrial , Animales Recién Nacidos , Ratones Endogámicos C57BL , Recien Nacido Prematuro , Pulmón , Hipoxia/complicaciones , Oxígeno
13.
JCI Insight ; 7(18)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35980752

RESUMEN

Accurate estimate of fetal maturity could provide individualized guidance for delivery of complicated pregnancies. However, current methods are invasive, have low accuracy, and are limited to fetal lung maturation. To identify diagnostic gestational biomarkers, we performed transcriptomic profiling of lung and brain, as well as cell-free RNA from amniotic fluid of preterm and term rhesus macaque fetuses. These data identify potentially new and prior-associated gestational age differences in distinct lung and neuronal cell populations when compared with existing single-cell and bulk RNA-Seq data. Comparative analyses found hundreds of genes coincidently induced in lung and amniotic fluid, along with dozens in brain and amniotic fluid. These data enable creation of computational models that accurately predict lung compliance from amniotic fluid and lung transcriptome of preterm fetuses treated with antenatal corticosteroids. Importantly, antenatal steroids induced off-target gene expression changes in the brain, impinging upon synaptic transmission and neuronal and glial maturation, as this could have long-term consequences on brain development. Cell-free RNA in amniotic fluid may provide a substrate of global fetal maturation markers for personalized management of at-risk pregnancies.


Asunto(s)
Líquido Amniótico , Ácidos Nucleicos Libres de Células , Líquido Amniótico/metabolismo , Animales , Ácidos Nucleicos Libres de Células/metabolismo , Femenino , Desarrollo Fetal , Macaca mulatta , Embarazo , Transcriptoma
14.
Am J Obstet Gynecol ; 227(5): 696-704, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35932879

RESUMEN

Antenatal steroid therapy is standard care for women at imminent risk of preterm delivery. When deliveries occur within 7 days of treatment, antenatal steroid therapy reduces the risk of neonatal death and improves preterm outcomes by exerting diverse developmental effects on the fetal organs, in particular the preterm lung and cardiovascular system. There is, however, sizable variability in antenatal steroid treatment efficacy, and an important percentage of fetuses exposed to antenatal steroid therapy do not respond sufficiently to derive benefit. Respiratory distress syndrome, for example, is a central metric of clinical trials to assess antenatal steroid outcomes. In the present analysis, we addressed the concept of antenatal steroid nonresponsiveness, and defined a failed or suboptimal response to antenatal steroids as death or a diagnosis of respiratory distress syndrome following treatment. For deliveries at 24 to 35 weeks' gestation, the number needed to treat to prevent 1 case of respiratory distress syndrome was 19 (95% confidence interval, 14-28). Reflecting gestation-dependent risk, for deliveries at >34 weeks' gestation the number needed to treat was 55 (95% confidence interval, 30-304), whereas for elective surgical deliveries at term this number was 106 (95% confidence interval, 61-421). We reviewed data from clinical and animal studies investigating antenatal steroid therapy to highlight the significant incidence of antenatal steroid therapy nonresponsiveness (ie, residual mortality or respiratory distress syndrome after treatment), and the potential mechanisms underpinning this outcome variability. The origins of this variability may be related to both the manner in which the therapy is applied (ie, the treatment regimen itself) and factors specific to the individual (ie, genetic variation, stress, infection). The primary aims of this review were: (1) to emphasize to the obstetrical and neonatal communities the extent of antenatal steroid response variability and its potential impact; (2) to propose approaches by which antenatal steroid therapy may be better applied to improve overall benefit; and (3) to stimulate further research toward the empirical optimization of this important antenatal therapy.

15.
Stem Cells Transl Med ; 11(8): 828-840, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35758326

RESUMEN

Mesenchymal stem cell (MSC) extracellular vesicles (EVs) have beneficial effects in preclinical bronchopulmonary dysplasia and pulmonary hypertension (BPD-PH) models. The optimal source, dosing, route, and duration of effects are however unknown. The objectives of this study were to (a) compare the efficacy of GMP-grade EVs obtained from Wharton's Jelly MSCs (WJ-MSCs) and bone marrow (BM-MSCs), (b) determine the optimal dosing and route of administration, (c) evaluate its long-term effects, and (d) determine how MSC EVs alter the lung transcriptome. Newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P)1-P14 were given (a) intra-tracheal (IT) BM or WJ-MSC EVs or placebo, (b) varying doses of IT WJ-MSC EVs, or (c) IT or intravenous (IV) WJ-MSC EVs on P3. Rats were evaluated at P14 or 3 months. Early administration of IT BM-MSC or WJ-MSC EVs had similar beneficial effects on lung structure and PH in hyperoxia-exposed rats. WJ-MSC EVs however had superior effects on cardiac remodeling. Low, medium, and high dose WJ-MSC EVs had similar cardiopulmonary regenerative effects. IT and IV WJ-MSC EVs similarly improved vascular density and reduced PH in hyperoxic rats. Gene-set enrichment analysis of transcripts differentially expressed in WJ-MSC EV-treated rats showed that induced transcripts were associated with angiogenesis. Long-term studies demonstrated that a single early MSC EV dose has pulmonary vascular protective effects 3 months after administration. Together, our findings have significant translational implications as it provides critical insight into the optimal source, dosing, route, mechanisms of action, and duration of effects of MSC-EVs for BPD-PH.


Asunto(s)
Displasia Broncopulmonar , Vesículas Extracelulares , Hiperoxia , Hipertensión Pulmonar , Células Madre Mesenquimatosas , Gelatina de Wharton , Animales , Displasia Broncopulmonar/terapia , Modelos Animales de Enfermedad , Humanos , Hiperoxia/complicaciones , Hipertensión Pulmonar/terapia , Recién Nacido , Ratas
16.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L784-L793, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35380907

RESUMEN

Antenatal steroid (ANS) therapy is the standard care for women at imminent risk of preterm labor. Despite extensive and long-standing use, 40%-50% of babies exposed antenatally to steroids do not derive benefit; remaining undelivered 7 days or more after ANS treatment is associated with a lack of treatment benefit and increased risk of harm. We used a pregnant sheep model to evaluate the impact of continuous versus pulsed ANS treatments on fetal lung maturation at an extended, 8-day treatment to delivery interval. Continuous low-dose ANS treatments for more than 72 h in duration improved fetal lung maturation at 8 days after treatment initiation. If fetal ANS exposure was interrupted, the beneficial ANS effect was lost. Truncated treatments, including that simulating the current clinical treatment regimen, did not improve lung function. Variable fetal lung maturation was correlated to the amount of saturated phosphatidylcholine present in the lung fluid. These data demonstrate that 1) the durability of ANS therapy may be enhanced by employing an extended, low-dose treatment regimen by reducing total dose and 2) interrupting the continuity of fetal exposure by allowing it to fall below a minimal threshold was associated with comparably poor functional maturation of the preterm ovine lung.


Asunto(s)
Betametasona , Madurez de los Órganos Fetales , Animales , Betametasona/farmacología , Femenino , Glucocorticoides/farmacología , Humanos , Pulmón , Embarazo , Atención Prenatal , Ovinos , Esteroides/farmacología
17.
Stem Cells Transl Med ; 11(2): 189-199, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298658

RESUMEN

Bronchopulmonary dysplasia (BPD) is a life-threatening condition in preterm infants with few effective therapies. Mesenchymal stem or stromal cells (MSCs) are a promising therapeutic strategy for BPD. The ideal MSC source for BPD prevention is however unknown. The objective of this study was to compare the regenerative effects of MSC obtained from bone marrow (BM) and umbilical cord tissue (UCT) in an experimental BPD model. In vitro, UCT-MSC demonstrated greater proliferation and expression of anti-inflammatory cytokines as compared to BM-MSC. Lung epithelial cells incubated with UCT-MSC conditioned media (CM) had better-wound healing following scratch injury. UCT-MSC CM and BM-MSC CM had similar pro-angiogenic effects on hyperoxia-exposed pulmonary microvascular endothelial cells. In vivo, newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P) 1 to 21 were given intra-tracheal (IT) BM or UCT-MSC (1 × 106 cells/50 µL), or placebo (PL) on P3. Hyperoxia PL-treated rats had marked alveolar simplification, reduced lung vascular density, pulmonary vascular remodeling, and lung inflammation. In contrast, administration of both BM-MSC and UCT-MSC significantly improved alveolar structure, lung angiogenesis, pulmonary vascular remodeling, and lung inflammation. UCT-MSC hyperoxia-exposed rats however had greater improvement in some morphometric measures of alveolarization and less lung macrophage infiltration as compared to the BM-MSC-treated group. Together, these findings suggest that BM-MSC and UCT-MSC have significant lung regenerative effects in experimental BPD but UCT-MSC suppresses lung macrophage infiltration and promotes lung epithelial cell healing to a greater degree.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Células Madre Mesenquimatosas , Neumonía , Animales , Animales Recién Nacidos , Médula Ósea , Displasia Broncopulmonar/terapia , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Recién Nacido , Recien Nacido Prematuro , Pulmón/metabolismo , Ratas , Ratas Sprague-Dawley , Cordón Umbilical , Remodelación Vascular
18.
Am J Obstet Gynecol ; 226(4): 564.e1-564.e14, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34626553

RESUMEN

BACKGROUND: Antenatal corticosteroid therapy is a standard of care for women at imminent risk of preterm labor. However, the optimal (maximum benefit and minimal risk of side effects) antenatal corticosteroid dosing strategy remains unclear. Although conveying overall benefit when given to the right patient at the right time, antenatal corticosteroid treatment efficacy is highly variable and is not risk-free. Building on earlier findings, we hypothesized that when administered in combination with slow-release betamethasone acetate, betamethasone phosphate and the high maternal-fetal betamethasone concentrations it generates are redundant for fetal lung maturation. OBJECTIVE: Using an established sheep model of prematurity and postnatal ventilation of the preterm lamb, we aimed to compare the pharmacodynamic effects of low-dosage treatment with betamethasone acetate only against a standard dosage of betamethasone phosphate and betamethasone acetate as recommended by the American College of Obstetricians and Gynecologists for women at risk of imminent preterm delivery between 24 0/7 and 35 6/7 weeks' gestation. STUDY DESIGN: Ewes carrying a single fetus at 122±1 days' gestation (term=150 days) were randomized to receive either (1) maternal intramuscular injections of sterile saline (the saline negative control group, n=12), (2) 2 maternal intramuscular injections of 0.25 mg/kg betamethasone phosphate+betamethasone acetate administered at 24-hour dosing intervals (the betamethasone phosphate+betamethasone acetate group, n=12); or (3) 2 maternal intramuscular injections of 0.125 mg/kg betamethasone acetate administered at 24-hour dosing intervals (the betamethasone acetate group, n=11). The fetuses were surgically delivered 48 hours after treatment initiation and ventilated for 30 minutes to determine functional lung maturation. The fetuses were euthanized after ventilation, and the lungs were collected for analysis using quantitative polymerase chain reaction and Western blot assays. Fetal plasma adrenocorticotropic hormone levels were measured in the cord blood samples taken at delivery. RESULTS: Preterm lambs were defined as either antenatal corticosteroid treatment responders or nonresponders using an arbitrary cutoff, being a PaCO2 level at 30 minutes of ventilation being more extreme than 2 standard deviations from the mean value of the normally distributed saline control group values. Compared with the animals in the saline control group, the animals in the antenatal corticosteroid treatment groups showed significantly improved lung physiological responses (blood gas and ventilation data) and had a biochemical signature (messenger RNA and surfactant protein assays) consistent with functional maturation. However, the betamethasone acetate group had a significantly higher treatment response rate than the betamethasone phosphate+betamethasone acetate group. These physiological results were strongly correlated to the amount of surfactant protein A. Birthweight was lower in the betamethasone phosphate+betamethasone acetate group and the fetal hypothalamic-pituitary-adrenal axis was suppressed to a greater extent in the betamethasone phosphate+betamethasone acetate group. CONCLUSION: Low-dosage antenatal corticosteroid therapy solely employing betamethasone acetate was sufficient for fetal lung maturation. The elevated maternal-fetal betamethasone concentrations associated with the coadministration of betamethasone phosphate did not in addition improve lung maturation but were associated with greater fetal hypothalamic-pituitary-adrenal axis suppression, a lower antenatal corticosteroid treatment response rate, and lower birthweight-outcomes not desirable in a clinical setting. These data warranted a clinical investigation of sustained low-dosage antenatal corticosteroid treatments that avoid high maternal-fetal betamethasone exposures.


Asunto(s)
Glucocorticoides , Sistema Hipotálamo-Hipofisario , Animales , Betametasona/análogos & derivados , Betametasona/farmacología , Peso al Nacer , Femenino , Glucocorticoides/uso terapéutico , Pulmón/metabolismo , Sistema Hipófiso-Suprarrenal , Embarazo , Ovinos
19.
Pediatr Res ; 92(1): 118-124, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34465875

RESUMEN

BACKGROUND: Teratogen-induced congenital diaphragmatic hernia (CDH) rat models are commonly used to study the pathophysiology. We have created a new and reliable surgically induced diaphragmatic hernia (DH) model to obtain a purely mechanical DH rat model, and avoid the confounding teratogen-induced effects on the lung development. METHODS: Fetal DH was surgically created on fetuses at E18.5 and harvested at E21.5 in rats. Four groups were evaluated (n = 16): control (CONT), control exposed to Nitrofen (CONT NIT), DH surgically created (DH SURG), and CDH Nitrofen (CDH NIT). Body weight, total lung weights, and their ratio (BW, TLW, and TLBR) were compared. Air space (AS), parenchyma (PA), total protein, and DNA contents were measured to verify lung hypoplasia. Medial wall thickness (MWT) of pulmonary arterioles was also analyzed. RESULTS: DH SURG showed significant hypoplasia (decreased in total protein and DNA) vs CONT (p < 0.05); DH SURG vs CDH NIT were similar in TLW and TLBR. DH SURG has less AS than CONT (p < 0.05) and similar PA compared to CONT NIT and CDH NIT, MWT were similarly increased in CONT NIT, DH SURG, and CDH NIT. CONCLUSIONS: This novel surgical model generates fetal lung hypoplasia contributing to the study of the mechanical compression effect on fetal lung development in DH. IMPACT: There is a critical need to develop a surgical model in rat to complement the findings of the well-known Nitrofen-induced CDH model. This experimental study is pioneer and can help to understand better the CDH pathophysiological changes caused by herniated abdominal viscera compression against the lung during the final stage of gestation in CDH fetuses, and also to develop more efficient treatments in near future.


Asunto(s)
Hernias Diafragmáticas Congénitas , Animales , ADN/metabolismo , Modelos Animales de Enfermedad , Feto , Hernias Diafragmáticas Congénitas/metabolismo , Pulmón , Modelos Anatómicos , Éteres Fenílicos/toxicidad , Ratas , Ratas Sprague-Dawley , Teratógenos/metabolismo , Teratógenos/farmacología
20.
Lancet Reg Health Am ; 14: 100328, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36777389

RESUMEN

Background: Congenital diaphragmatic hernia (CDH) is a severe embryological defect that causes pulmonary hypoplasia and hypertension. The prevalence and mortality rate of CDH varies around the world and little information is available about CDH in Latin America. Our aim was to estimate the general prevalence, mortality rate, prevalence of associated anomalies and features related to the outcomes of CDH in newborns from São Paulo state, Brazil. Methods: Population-based cross-sectional study based on data gathered from the Live Births Information System (SINASC) and the Mortality Information System (SIM) of children born in São Paulo state between January 1st, 2006, and December 31st, 2017. Findings: From 7,311,074 total survival discharges between 2006 and 2017, 1,155 were CDH-related, resulting in a prevalence rate of 1:6329 (95%CI = 1/6715 - 1/5984) and a mortality rate of 63·72% (95%CI = 60.95 - 66.50), 510 presented complex associated anomalies (44·15%). Maternal data showed higher prevalence among older mothers (older than 35 years old: 2·13 per 10,000) and, also, women with more years of schooling (higher than 12 years: 1·99 per 10,000). Presence of associated anomalies (95%CI = 5.69-11.10), 1-min Apgar (95%CI = 1.44-2.95), maternal schooling (95%CI = 1.06-2.43) and birth weight (95%CI = 1.04-2.26) were the most significant features associated with mortality. Interpretation: There was 1 CDH case for every 6329 newborns in São Paulo and the mortality rate among those cases was 63·72% - a high rate compared to other countries. Funding: This study didn't receive any specific grant from any funding agency in the public, commercial or not-for-profit sectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...