Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Front Physiol ; 15: 1385277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706948

RESUMEN

Background: Electrocardiographic (ECG) features of left bundle branch (LBB) block (LBBB) can be observed in up to 20%-30% of patients suffering from heart failure with reduced ejection fraction. However, predicting which LBBB patients will benefit from cardiac resynchronization therapy (CRT) or conduction system pacing remains challenging. This study aimed to establish a translational model of LBBB to enhance our understanding of its pathophysiology and improve therapeutic approaches. Methods: Fourteen male pigs underwent radiofrequency catheter ablation of the proximal LBB under fluoroscopy and ECG guidance. Comprehensive clinical assessments (12-lead ECG, bloodsampling, echocardiography, electroanatomical mapping) were conducted before LBBB induction, after 7, and 21 days. Three pigs received CRT pacemakers 7 days after LBB ablation to assess resynchronization feasibility. Results: Following proximal LBB ablation, ECGs displayed characteristic LBBB features, including QRS widening, slurring in left lateral leads, and QRS axis changes. QRS duration increased from 64.2 ± 4.2 ms to 86.6 ± 12.1 ms, and R wave peak time in V6 extended from 21.3 ± 3.6 ms to 45.7 ± 12.6 ms. Echocardiography confirmed cardiac electromechanical dyssynchrony, with septal flash appearance, prolonged septal-to-posterior-wall motion delay, and extended ventricular electromechanical delays. Electroanatomical mapping revealed a left ventricular breakthrough site shift and significantly prolonged left ventricular activation times. RF-induced LBBB persisted for 3 weeks. CRT reduced QRS duration to 75.9 ± 8.6 ms, demonstrating successful resynchronization. Conclusion: This porcine model accurately replicates the electrical and electromechanical characteristics of LBBB observed in patients. It provides a practical, cost-effective, and reproducible platform to investigate molecular and translational aspects of cardiac electromechanical dyssynchrony in a controlled and clinically relevant setting.

5.
Basic Res Cardiol ; 119(1): 93-112, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38170280

RESUMEN

In recent years, SGLT2 inhibitors have become an integral part of heart failure therapy, and several mechanisms contributing to cardiorenal protection have been identified. In this study, we place special emphasis on the atria and investigate acute electrophysiological effects of dapagliflozin to assess the antiarrhythmic potential of SGLT2 inhibitors. Direct electrophysiological effects of dapagliflozin were investigated in patch clamp experiments on isolated atrial cardiomyocytes. Acute treatment with elevated-dose dapagliflozin caused a significant reduction of the action potential inducibility, the amplitude and maximum upstroke velocity. The inhibitory effects were reproduced in human induced pluripotent stem cell-derived cardiomyocytes, and were more pronounced in atrial compared to ventricular cells. Hypothesizing that dapagliflozin directly affects the depolarization phase of atrial action potentials, we examined fast inward sodium currents in human atrial cardiomyocytes and found a significant decrease of peak sodium current densities by dapagliflozin, accompanied by a moderate inhibition of the transient outward potassium current. Translating these findings into a porcine large animal model, acute elevated-dose dapagliflozin treatment caused an atrial-dominant reduction of myocardial conduction velocity in vivo. This could be utilized for both, acute cardioversion of paroxysmal atrial fibrillation episodes and rhythm control of persistent atrial fibrillation. In this study, we show that dapagliflozin alters the excitability of atrial cardiomyocytes by direct inhibition of peak sodium currents. In vivo, dapagliflozin exerts antiarrhythmic effects, revealing a potential new additional role of SGLT2 inhibitors in the treatment of atrial arrhythmias.


Asunto(s)
Fibrilación Atrial , Compuestos de Bencidrilo , Glucósidos , Células Madre Pluripotentes Inducidas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Animales , Porcinos , Miocitos Cardíacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Potenciales de Acción , Sodio
6.
J Mol Cell Cardiol ; 184: 26-36, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37793594

RESUMEN

RATIONALE: The neurokinin-III receptor was recently shown to regulate atrial cardiomyocyte excitability by inhibiting atrial background potassium currents. TASK-1 (hK2P3.1) two-pore-domain potassium channels, which are expressed atrial-specifically in the human heart, contribute significantly to atrial background potassium currents. As TASK-1 channels are regulated by a variety of intracellular signalling cascades, they represent a promising candidate for mediating the electrophysiological effects of the Gq-coupled neurokinin-III receptor. OBJECTIVE: To investigate whether TASK-1 channels mediate the neurokinin-III receptor activation induced effects on atrial electrophysiology. METHODS AND RESULTS: In Xenopus laevis oocytes, heterologously expressing neurokinin-III receptor and TASK-1, administration of the endogenous neurokinin-III receptor ligands substance P or neurokinin B resulted in a strong TASK-1 current inhibition. This could be reproduced by application of the high affinity neurokinin-III receptor agonist senktide. Moreover, preincubation with the neurokinin-III receptor antagonist osanetant blunted the effect of senktide. Mutagenesis studies employing TASK-1 channel constructs which lack either protein kinase C (PKC) phosphorylation sites or the domain which is regulating the diacyl glycerol (DAG) sensitivity domain of TASK-1 revealed a protein kinase C independent mechanism of TASK-1 current inhibition: upon neurokinin-III receptor activation TASK-1 channels are blocked in a DAG-dependent fashion. Finally, effects of senktide on atrial TASK-1 currents could be reproduced in patch-clamp measurements, performed on isolated human atrial cardiomyocytes. CONCLUSIONS: Heterologously expressed human TASK-1 channels are inhibited by neurokinin-III receptor activation in a DAG dependent fashion. Patch-clamp measurements, performed on human atrial cardiomyocytes suggest that the atrial-specific effects of neurokinin-III receptor activation on cardiac excitability are predominantly mediated via TASK-1 currents.


Asunto(s)
Fibrilación Atrial , Canales de Potasio de Dominio Poro en Tándem , Humanos , Animales , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Transducción de Señal , Proteína Quinasa C/metabolismo , Potasio/metabolismo , Xenopus laevis/metabolismo , Oocitos/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo
7.
Animals (Basel) ; 13(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37684988

RESUMEN

CASE SUMMARY: A two-year-old donkey presented with recurrent syncope. Electrocardiography revealed periods without any atrioventricular conduction and without any ventricular escape rhythm with a duration of up to one minute. Finally, atrioventricular conduction resumed spontaneously with a preceding ventricular escape beat. Laboratory tests and echocardiography identified no reversible cause. The diagnosis of a paroxysmal atrioventricular block (PAVB) was made. Therefore, a single-chamber cardiac pacemaker was implanted under general anesthesia. The device was programmed in the VVI mode to prevent further syncope. The therapy was considered successful as the donkey revealed no further syncope during the follow-up period of 17 months. CLINICAL RELEVANCE: Clinically relevant bradycardia is rare in equids. This is the first report to our knowledge to describe a PAVB, a term commonly used in human medicine, in a donkey. Detailed information about the diagnosis and the successful therapy is included, with a special focus on the implantation and programming of the permanent pacemaker.

8.
Eur Heart J ; 44(27): 2483-2494, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-36810794

RESUMEN

AIMS: Atrial fibrillation (AF) is associated with altered cAMP/PKA signaling and an AF-promoting reduction of L-type Ca2+-current (ICa,L), the mechanisms of which are poorly understood. Cyclic-nucleotide phosphodiesterases (PDEs) degrade cAMP and regulate PKA-dependent phosphorylation of key calcium-handling proteins, including the ICa,L-carrying Cav1.2α1C subunit. The aim was to assess whether altered function of PDE type-8 (PDE8) isoforms contributes to the reduction of ICa,L in persistent (chronic) AF (cAF) patients. METHODS AND RESULTS: mRNA, protein levels, and localization of PDE8A and PDE8B isoforms were measured by RT-qPCR, western blot, co-immunoprecipitation and immunofluorescence. PDE8 function was assessed by FRET, patch-clamp and sharp-electrode recordings. PDE8A gene and protein levels were higher in paroxysmal AF (pAF) vs. sinus rhythm (SR) patients, whereas PDE8B was upregulated in cAF only. Cytosolic abundance of PDE8A was higher in atrial pAF myocytes, whereas PDE8B tended to be more abundant at the plasmalemma in cAF myocytes. In co-immunoprecipitation, only PDE8B2 showed binding to Cav1.2α1C subunit which was strongly increased in cAF. Accordingly, Cav1.2α1C showed a lower phosphorylation at Ser1928 in association with decreased ICa,L in cAF. Selective PDE8 inhibition increased Ser1928 phosphorylation of Cav1.2α1C, enhanced cAMP at the subsarcolemma and rescued the lower ICa,L in cAF, which was accompanied by a prolongation of action potential duration at 50% of repolarization. CONCLUSION: Both PDE8A and PDE8B are expressed in human heart. Upregulation of PDE8B isoforms in cAF reduces ICa,L via direct interaction of PDE8B2 with the Cav1.2α1C subunit. Thus, upregulated PDE8B2 might serve as a novel molecular mechanism of the proarrhythmic reduction of ICa,L in cAF.


Asunto(s)
Fibrilación Atrial , Humanos , Calcio/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Miocitos Cardíacos/fisiología , Fosforilación
9.
Heart Rhythm ; 20(4): 501-509, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36509321

RESUMEN

BACKGROUND: Because of its antiarrhythmic potency and due to the lack of alternatives, amiodarone is often used for antiarrhythmic therapy in patients with implantable cardioverter-defibrillator (ICD) or cardiac resynchronization therapy-defibrillator systems. To date, robust data on the safety and clinical benefit of amiodarone therapy in these patients are missing. OBJECTIVE: The purpose of this study was to assess the periprocedural and postprocedural outcomes of combined therapy with beta-blockers plus amiodarone compared to treatment with single beta-blockers in the "real-life" cohort of ICD recipients of the German DEVICE registry. METHODS: A total of 4499 patients who underwent ICD implantation, revision, or upgrade in 49 centers participating in the German DEVICE registry were enrolled from March 2007 to February 2014. RESULTS: Amiodarone had no significant effect on the success of defibrillation testing. Early implantation-associated complications were similar between the groups. However, 1-year overall mortality was significantly higher in the beta-blocker plus amiodarone cohort (adjusted hazard ratio 2.09; P <.001). Interestingly, among the surviving patients, amiodarone was not associated with a significantly reduced risk of ICD discharges or syncopal events. Furthermore, the occurrence of ventricular tachycardia (VT) storm or incessant VTs and the number of patients scheduled for intracardiac ablation did not differ among both groups, whereas the rate of rehospitalization was lower in the cohort with only beta-blockers. CONCLUSIONS: Although amiodarone has no adverse effect on the success of defibrillation testing, our data suggest an increased all-cause mortality under amiodarone therapy, especially in the subgroups of patients with sinus rhythm or severely reduced left ventricular function. In surviving patients, rates of arrhythmic events were comparable.


Asunto(s)
Amiodarona , Terapia de Resincronización Cardíaca , Desfibriladores Implantables , Taquicardia Ventricular , Humanos , Amiodarona/uso terapéutico , Desfibriladores Implantables/efectos adversos , Terapia de Resincronización Cardíaca/efectos adversos , Antiarrítmicos , Antagonistas Adrenérgicos beta/uso terapéutico , Sistema de Registros , Taquicardia Ventricular/terapia
10.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077591

RESUMEN

Gap junctions and their expression pattern are essential to robust function of intercellular communication and electrical propagation in cardiomyocytes. In healthy myocytes, the main cardiac gap junction protein connexin-43 (Cx43) is located at the intercalated disc providing a clear direction of signal spreading across the cardiac tissue. Dislocation of Cx43 to lateral membranes has been detected in numerous cardiac diseases leading to slowed conduction and high propensity for the development of arrhythmias. At the cellular level, arrhythmogenic diseases are associated with elevated levels of oxidative distress and gap junction remodeling affecting especially the amount and sarcolemmal distribution of Cx43 expression. So far, a mechanistic link between sustained oxidative distress and altered Cx43 expression has not yet been identified. Here, we propose a novel cell model based on murine induced-pluripotent stem cell-derived cardiomyocytes to investigate subcellular signaling pathways linking cardiomyocyte distress with gap junction remodeling. We tested the new hypothesis that chronic distress, induced by rapid pacing, leads to increased reactive oxygen species, which promotes expression of a micro-RNA, miR-1, specific for the control of Cx43. Our data demonstrate that Cx43 expression is highly sensitive to oxidative distress, leading to reduced expression. This effect can be efficiently prevented by the glutathione peroxidase mimetic ebselen. Moreover, Cx43 expression is tightly regulated by miR-1, which is activated by tachypacing-induced oxidative distress. In light of the high arrhythmogenic potential of altered Cx43 expression, we propose miR-1 as a novel target for pharmacological interventions to prevent the maladaptive remodeling processes during chronic distress in the heart.


Asunto(s)
Conexina 43 , MicroARNs , Animales , Arritmias Cardíacas/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
11.
Eur Heart J Case Rep ; 6(7): ytac253, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35821967

RESUMEN

Background: Dextrocardia is a congenital anomaly in which the apex of the heart is abnormally located on the right side of the chest. Situs solitus describes viscera that are in the normal position, with the stomach on the left side. In these patients, implantation of transvenous implantable cardioverter-defibrillator (ICD) can be limited by anatomical abnormalities commonly associated with this condition. Case summary: We present the case of a young female patient with absent right atrioventricular connection, morphologically left systemic ventricle, muscular restrictive ventricular septal defect, and dextrocardia with situs solitus who was indicated for secondary prophylactic ICD implantation after resuscitation for polymorphic ventricular tachycardia. Due to a bilateral bidirectional Glenn anastomosis, transvenous access via the vena cava superior to the right ventricle could not be achieved. For this reason, we successfully implanted a subcutaneous ICD (S-ICD) with an individually optimized right parasternal electrode position. Potential complications of epimyocardial implantation via re-thoracotomy could thus be circumvented. Discussion: In patients with complex congenital heart disease, the S-ICD is an effective method of preventing sudden cardiac death. Our case report demonstrates the feasibility of left S-ICD implantation even in the presence of dextrocardia with situs solitus.

12.
Pharmaceutics ; 14(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35456597

RESUMEN

Atrial fibrillation (AF) is an arrhythmia associated with an increased stroke risk and mortality rate. Current treatment options leave unmet needs in AF therapy. Recently, doxapram has been introduced as a possible new option for AF treatment in a porcine animal model. To better understand its pharmacokinetics, three German Landrace pigs were treated with intravenous doxapram (1 mg/kg). Plasma and brain tissue samples were collected. For the analysis of these samples, an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the simultaneous measurement of doxapram and its active metabolite 2-ketodoxapram was developed and validated. The assay had a lower limit of quantification (LLOQ) of 10 pg/mL for plasma and 1 pg/sample for brain tissue. In pigs, doxapram pharmacokinetics were biphasic with a terminal elimination half-life (t1/2) of 1.38 ± 0.22 h and a maximal plasma concentration (cmax) of 1780 ± 275 ng/mL. Its active metabolite 2-ketodoxapram had a t1/2 of 2.42 ± 0.04 h and cmax of 32.3 ± 5.5 h after administration of doxapram. Protein binding was 95.5 ± 0.9% for doxapram and 98.4 ± 0.3% for 2-ketodoxapram with a brain-to-plasma ratio of 0.58 ± 0.24 for doxapram and 0.12 ± 0.02 for 2-ketodoxapram. In conclusion, the developed assay was successfully applied to the creation of pharmacokinetic data for doxapram, possibly improving the safety of its usage.

13.
J Am Heart Assoc ; 11(7): e023472, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301863

RESUMEN

Background Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. However, underlying molecular mechanisms are insufficiently understood. Previous studies suggested that microRNA (miRNA) dependent gene regulation plays an important role in the initiation and maintenance of AF. The 2-pore-domain potassium channel TASK-1 (tandem of P domains in a weak inward rectifying K+ channel-related acid sensitive K+ channel 1) is an atrial-specific ion channel that is upregulated in AF. Inhibition of TASK-1 current prolongs the atrial action potential duration to similar levels as in patients with sinus rhythm. Here, we hypothesize that miRNAs might be responsible for the regulation of KCNK3 that encodes for TASK-1. Methods and Results We selected miRNAs potentially regulating KCNK3 and studied their expression in atrial tissue samples obtained from patients with sinus rhythm, paroxysmal AF, or permanent/chronic AF. MiRNAs differentially expressed in AF were further investigated for their ability to regulate KCNK3 mRNA and TASK-1 protein expression in human induced pluripotent stem cells, transfected with miRNA mimics or inhibitors. Thereby, we observed that miR-34a increases TASK-1 expression and current and further decreases the resting membrane potential of Xenopus laevis oocytes, heterologously expressing hTASK-1. Finally, we investigated associations between miRNA expression in atrial tissues and clinical parameters of our patient cohort. A cluster containing AF stage, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left atrial diameter, atrial COL1A2 (collagen alpha-2(I) chain), and TASK-1 protein level was associated with increased expression of miR-25, miR-21, miR-34a, miR-23a, miR-124, miR-1, and miR-29b as well as decreased expression of miR-9 and miR-485. Conclusions These results suggest an important pathophysiological involvement of miRNAs in the regulation of atrial expression of the TASK-1 potassium channel in patients with atrial cardiomyopathy.


Asunto(s)
Fibrilación Atrial , Células Madre Pluripotentes Inducidas , MicroARNs , Proteínas del Tejido Nervioso , Canales de Potasio de Dominio Poro en Tándem , Dilatación , Atrios Cardíacos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo
14.
Cardiovasc Res ; 118(7): 1728-1741, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34028533

RESUMEN

AIMS: TASK-1 (K2P3.1) two-pore-domain potassium channels are atrial-specific and significantly up-regulated in atrial fibrillation (AF) patients, contributing to AF-related electrical remodelling. Inhibition of TASK-1 in cardiomyocytes of AF patients was shown to counteract AF-related action potential duration shortening. Doxapram was identified as a potent inhibitor of the TASK-1 channel. In this study, we investigated the antiarrhythmic efficacy of doxapram in a porcine model of AF. METHODS AND RESULTS: Doxapram successfully cardioverted pigs with artificially induced episodes of AF. We established a porcine model of persistent AF in domestic pigs via intermittent atrial burst stimulation using implanted pacemakers. All pigs underwent catheter-based electrophysiological investigations prior to and after 14 days of doxapram treatment. Pigs in the treatment group received intravenous administration of doxapram once per day. In doxapram-treated AF pigs, the AF burden was significantly reduced. After 14 days of treatment with doxapram, TASK-1 currents were still similar to values of sinus rhythm animals. Doxapram significantly suppressed AF episodes and normalized cellular electrophysiology by inhibition of the TASK-1 channel. Patch-clamp experiments on human atrial cardiomyocytes, isolated from patients with and without AF could reproduce the TASK-1 inhibitory effect of doxapram. CONCLUSION: Repurposing doxapram might yield a promising new antiarrhythmic drug to treat AF in patients.


Asunto(s)
Fibrilación Atrial , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem , Animales , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Doxapram/uso terapéutico , Atrios Cardíacos/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Porcinos
15.
Cells ; 10(11)2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34831137

RESUMEN

Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.


Asunto(s)
Remodelación Atrial , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Miocardio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Enfermedades Cardiovasculares/genética , Regulación de la Expresión Génica , Humanos , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética
16.
J Mol Cell Cardiol ; 158: 49-62, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33974928

RESUMEN

AIMS: Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging populations of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in SAC- presence and activity associated with AF. METHODS AND RESULTS: Using primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC- signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the cation-nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel, its sensitivity to calcium, paxilline or iberiotoxin (blockers), and NS11021 (activator), indicated presence of calcium-dependent 'big potassium channels' (BKCa). In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of BKCa current during stretch. No co-immunoprecipitation of Piezo1 and BKCa was detected. CONCLUSIONS: Human atrial fibroblasts contain at least two types of ion channels that are activated during stretch: Piezo1 and BKCa. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data support the presence and interplay of Piezo1 and BKCa in human atrial fibroblasts in the absence of physical links between the two channel proteins.


Asunto(s)
Arritmia Sinusal/metabolismo , Fibrilación Atrial/metabolismo , Remodelación Atrial/genética , Atrios Cardíacos/metabolismo , Canales Iónicos/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal/genética , Adulto , Anciano , Anciano de 80 o más Años , Arritmia Sinusal/patología , Arritmia Sinusal/cirugía , Fibrilación Atrial/patología , Fibrilación Atrial/cirugía , Remodelación Atrial/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Atrios Cardíacos/patología , Humanos , Indoles/farmacología , Canales Iónicos/genética , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/agonistas , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Tetrazoles/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Transfección
17.
Front Physiol ; 12: 650964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868017

RESUMEN

In search of more efficacious and safe pharmacological treatments for atrial fibrillation (AF), atria-selective antiarrhythmic agents have been promoted that target ion channels principally expressed in the atria. This concept allows one to engage antiarrhythmic effects in atria, but spares the ventricles from potentially proarrhythmic side effects. It has been suggested that cardiac small conductance Ca2+-activated K+ (SK) channels may represent an atria-selective target in mammals including humans. However, there are conflicting data concerning the expression of SK channels in different stages of AF, and recent findings suggest that SK channels are upregulated in ventricular myocardium when patients develop heart failure. To address this issue, RNA-sequencing was performed to compare expression levels of three SK channels (KCNN1, KCNN2, and KCNN3) in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and patients with cardiac disease in sinus rhythm or with AF. In addition, for control purposes expression levels of several genes known to be either chamber-selective or differentially expressed in AF and heart failure were determined. In atria, as compared to ventricle from transplant donor hearts, we confirmed higher expression of KCNN1 and KCNA5, and lower expression of KCNJ2, whereas KCNN2 and KCNN3 were statistically not differentially expressed. Overall expression of KCNN1 was low compared to KCNN2 and KCNN3. Comparing atrial tissue from patients with AF to sinus rhythm samples we saw downregulation of KCNN2 in AF, as previously reported. When comparing ventricular tissue from heart failure patients to non-diseased samples, we found significantly increased ventricular expression of KCNN3 in heart failure, as previously published. The other channels showed no significant difference in expression in either disease. Our results add weight to the view that SK channels are not likely to be an atria-selective target, especially in failing human hearts, and modulators of these channels may prove to have less utility in treating AF than hoped. Whether targeting SK1 holds potential remains to be elucidated.

18.
Front Pharmacol ; 12: 638445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897427

RESUMEN

Atrial fibrillation (AF) is the most common sustained arrhythmia with a prevalence of up to 4% and an upwards trend due to demographic changes. It is associated with an increase in mortality and stroke incidences. While stroke risk can be significantly reduced through anticoagulant therapy, adequate treatment of other AF related symptoms remains an unmet medical need in many cases. Two main treatment strategies are available: rate control that modulates ventricular heart rate and prevents tachymyopathy as well as rhythm control that aims to restore and sustain sinus rhythm. Rate control can be achieved through drugs or ablation of the atrioventricular node, rendering the patient pacemaker-dependent. For rhythm control electrical cardioversion and pharmacological cardioversion can be used. While electrical cardioversion requires fasting and sedation of the patient, antiarrhythmic drugs have other limitations. Most antiarrhythmic drugs carry a risk for pro-arrhythmic effects and are contraindicated in patients with structural heart diseases. Furthermore, catheter ablation of pulmonary veins can be performed with its risk of intraprocedural complications and varying success. In recent years TASK-1 has been introduced as a new target for AF therapy. Upregulation of TASK-1 in AF patients contributes to prolongation of the action potential duration. In a porcine model of AF, TASK-1 inhibition by gene therapy or pharmacological compounds induced cardioversion to sinus rhythm. The DOxapram Conversion TO Sinus rhythm (DOCTOS)-Trial will reveal whether doxapram, a potent TASK-1 inhibitor, can be used for acute cardioversion of persistent and paroxysmal AF in patients, potentially leading to a new treatment option for AF.

19.
Mol Ther ; 29(8): 2499-2513, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839322

RESUMEN

Recurrent episodes of decompensated heart failure (HF) represent an emerging cause of hospitalizations in developed countries with an urgent need for effective therapies. Recently, the pregnancy-related hormone relaxin (RLN) was found to mediate cardio-protective effects and act as a positive inotrope in the cardiovascular system. RLN binds to the RLN family peptide receptor 1 (RXFP1), which is predominantly expressed in atrial cardiomyocytes. We therefore hypothesized that ventricular RXFP1 expression might exert potential therapeutic effects in an in vivo model of cardiac dysfunction. Thus, mice were exposed to pressure overload by transverse aortic constriction and treated with AAV9 to ectopically express RXFP1. To activate RXFP1 signaling, RLN was supplemented subcutaneously. Ventricular RXFP1 expression was well tolerated. Additional RLN administration not only abrogated HF progression but restored left ventricular systolic function. In accordance, upregulation of fetal genes and pathological remodeling markers were significantly reduced. In vitro, RLN stimulation of RXFP1-expressing cardiomyocytes induced downstream signaling, resulting in protein kinase A (PKA)-specific phosphorylation of phospholamban (PLB), which was distinguishable from ß-adrenergic activation. PLB phosphorylation corresponded to increased calcium amplitude and contractility. In conclusion, our results demonstrate that ligand-activated cardiac RXFP1 gene therapy represents a therapeutic approach to attenuate HF with the potential to adjust therapy by exogenous RLN supplementation.


Asunto(s)
Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Relaxina/administración & dosificación , Animales , Proteínas de Unión al Calcio/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Inyecciones Subcutáneas , Ligandos , Masculino , Ratones , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Resultado del Tratamiento , Función Ventricular
20.
JACC Basic Transl Sci ; 6(4): 331-345, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33681537

RESUMEN

There is ongoing debate as to whether cardiac complications of coronavirus disease-2019 (COVID-19) result from myocardial viral infection or are secondary to systemic inflammation and/or thrombosis. We provide evidence that cardiomyocytes are infected in patients with COVID-19 myocarditis and are susceptible to severe acute respiratory syndrome coronavirus 2. We establish an engineered heart tissue model of COVID-19 myocardial pathology, define mechanisms of viral pathogenesis, and demonstrate that cardiomyocyte severe acute respiratory syndrome coronavirus 2 infection results in contractile deficits, cytokine production, sarcomere disassembly, and cell death. These findings implicate direct infection of cardiomyocytes in the pathogenesis of COVID-19 myocardial pathology and provides a model system to study this emerging disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA