Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903408

RESUMEN

Here we present an approach to functionalize silanized single-walled carbon nanotubes (SWNTs) through copper-free click chemistry for the assembly of inorganic and biological nanohybrids. The nanotube functionalization route involves silanization and strain-promoted azide-alkyne cycloaddition reactions (SPACC). This was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and Fourier transform infra-red spectroscopy. Silane-azide-functionalized SWNTs were immobilized from solution onto patterned substrates through dielectrophoresis (DEP). We demonstrate the general applicability of our strategy for the functionalization of SWNTs with metal nanoparticles (gold nanoparticles), fluorescent dyes (Alexa Fluor 647) and biomolecules (aptamers). In this regard, dopamine-binding aptamers were conjugated to the functionalized SWNTs to perform real-time detection of dopamine at different concentrations. Additionally, the chemical route is shown to selectively functionalize individual nanotubes grown on the surface of silicon substrates, contributing towards future nano electronic device applications.


Asunto(s)
Nanopartículas del Metal , Nanotubos de Carbono , Nanotubos de Carbono/química , Oro , Azidas/química , Dopamina
2.
Angew Chem Int Ed Engl ; 58(48): 17383-17392, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31539189

RESUMEN

The electrodeposition of noble metals using corresponding dissolved metal salts represents an interesting process for the improvement of the electrocatalytic hydrogen evolution reaction (HER) properties of less active substrate materials. The fact that only a small fraction of the dissolved noble metals reaches the substrate represents a serious obstacle to this common procedure. We therefore chose a different path. It was found that the HER activity of Ni42 alloy drastically increased (η=140 mV at j=10 mA cm-2 ; pH 1) when a platinum counter electrode was used during polarization experiments in acid. This improvement was caused by a platinum transfer from the platinum anode to the steel cathode, a process which occurred simultaneously to the hydrogen evolution. The negligible accumulation of Pt (26 µg) in the electrolyte turns this straight-forward transfer procedure into a highly cost-effective, environmentally friendly, and waste reducing approach for the generation of cheap, stable and effective HER electrodes.

3.
RSC Adv ; 9(43): 24742-24750, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35528685

RESUMEN

We report the parallel generation of close-packed ordered silane nanodot arrays with nanodot diameters of few 100 nm and nearest-neighbor distances in the one-micron range. Capillary nanostamping of heterocyclic silanes coupled with ring-opening triggered by hydroxyl groups at the substrate surfaces yields nanodots consisting of silane monolayers with exposed terminal functional groups. Using spongy mesoporous silica stamps with methyl-terminated mesopore walls inert towards the heterocyclic silanes, we could manually perform multiple successive stamping cycles under ambient conditions without interruptions for ink refilling. Further functionalizations include the synthesis of polymer nanobrushes on the silane nanodots by surface-initiated atom-transfer radical polymerization. Proteins-of-interest fused to the HaloTag were site-specifically captured to silane nanodots functionalized by copper-free reactions with azide derivatives. Thus, bioorthogonal functionalization for bioanalytics with a spatial resolution in the one-micron range may be realized on solid supports compatible with fluorescence-based optical microscopy. The feature sizes of the silane nanodot arrays match well the length scales characteristic of a variety of biomolecular submicroscopic organizations in living cells, thus representing a compromise between miniaturization and the resolution limit of optical microscopy for sensitive high-throughput bioanalytics.

4.
Nanoscale ; 9(45): 17829-17838, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29115339

RESUMEN

The use of proton exchange membrane (PEM) electrolyzers is the method of choice for the conversion of solar energy when frequently occurring changes of the current load are an issue. However, this technique requires electrolytes with low pH. All oxygen evolving electrodes working durably and actively in acids contain IrOx. Due to their scarcity and high acquisition costs, noble elements like Pt, Ru and Ir need to be replaced by earth abundant elements. We have evaluated a cobalt containing steel for use as an oxygen-forming electrode in H2SO4. We found that the dissolving of ingredients out of the steel electrode at oxidative potential in sulfuric acid, which is a well-known, serious issue, can be substantially reduced when the steel is electro-oxidized in LiOH prior to electrocatalysis. Under optimized synthesis conditions a cobalt-containing tool steel was rendered into a durable oxygen evolution reaction (OER) electrocatalyst (weight loss: 39 µg mm-2 after 50 000 s of chronopotentiometry at pH 1) that exhibits overpotentials down to 574 mV at 10 mA cm-2 current density at pH 1. Focused ion beam SEM (FIB-SEM) was successfully used to create a structure-stability relationship.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...