Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Thyroid ; 34(2): 261-273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38115594

RESUMEN

Background: Tanycytes are specialized glial cells within the mediobasal hypothalamus that have multiple functions, including hormone sensing and regulation of hypophysiotropic hormone secretion. There are ongoing discussions about the role of tanycytes in regulating the supply of hypothalamic thyroid hormones (THs) through the expression of TH transporters (Slc16a2, Slco1c1) and deiodinases (Dio2, Dio3). In this study, we investigated the potential feedback effect of thyrotropin (TSH) on the transcription of these gatekeeper genes on tanycytes. Methods: We analyzed the changes in the expression of TH-gatekeeper genes, in TSH-stimulated primary tanycytes, using quantitative polymerase chain reaction (qPCR). We also used RNAScope® in brain slices to further reveal the local distribution of the transcripts. In addition, we blocked intracellular pathways and used small-interfering RNA (siRNA) to elucidate differences in the regulation of the gatekeeper genes. Results: TSH elevated messenger RNA (mRNA) levels of Slco1c1, Dio2, and Dio3 in tanycytes, while Slc16a2 was mostly unaffected. Blockade and knockdown of the TSH receptor (TSHR) and antagonization of cAMP response element-binding protein (CREB) clearly abolished the increased expression induced by TSH, indicating PKA-dependent regulation through the TSHR. The TSH-dependent expression of Dio3 and Slco1c1 was also regulated by protein kinase C (PKC), and in case of Dio3, also by extracellular signal-regulated kinase (ERK) activity. Importantly, these gene regulations were specifically found in different subpopulations of tanycytes. Conclusions: This study demonstrates that TSH induces transcriptional regulation of TH-gatekeeper genes in tanycytes through the Tshr/Gαq/PKC pathway, in parallel to the Tshr/Gαs/PKA/CREB pathway. These differential actions of TSH on tanycytic subpopulations appear to be important for coordinating the supply of TH to the hypothalamus and aid its functions.


Asunto(s)
Células Ependimogliales , Tirotropina , Humanos , Tirotropina/farmacología , Tirotropina/metabolismo , Células Ependimogliales/metabolismo , Hormonas Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Receptores de Tirotropina/genética , Receptores de Tirotropina/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/metabolismo , Proteína Quinasa C/metabolismo
2.
Cancers (Basel) ; 13(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34771704

RESUMEN

Epithelial-mesenchymal transition (EMT) is a driving force for tumor growth, metastatic spread, therapy resistance, and the generation of cancer stem cells (CSCs). However, the regained stem cell character may also be exploited for therapeutic conversion of aggressive tumor cells to benign, highly differentiated cells. The PDAC-derived quasimesenchymal-type cell lines PANC-1 and MIA PaCa-2 have been successfully transdifferentiated to endocrine precursors or insulin-producing cells; however, the underlying mechanism of this increased plasticity remains elusive. Given its crucial role in normal pancreatic endocrine development and tumor progression, both of which involve EMT, we analyzed here the role of the small GTPase RAC1. Ectopic expression in PANC-1 cells of dominant negative or constitutively active mutants of RAC1 activation blocked or enhanced, respectively, the cytokine-induced activation of a ductal-to-endocrine transdifferentiation transcriptional program (deTDtP) as revealed by induction of the NEUROG3, INS, SLC2A2, and MAFA genes. Conversely, ectopic expression of RAC1b, a RAC1 splice isoform and functional antagonist of RAC1-driven EMT, decreased the deTDtP, while genetic knockout of RAC1b dramatically increased it. We further show that inhibition of RAC1 activation attenuated pluripotency marker expression and self-renewal ability, while depletion of RAC1b dramatically enhanced stemness features and clonogenic potential. Finally, rescue experiments involving pharmacological or RNA interference-mediated inhibition of RAC1 or RAC1b, respectively, confirmed that both RAC1 isoforms control the deTDtP in an opposite manner. We conclude that RAC1 and RAC1b antagonistically control growth factor-induced activation of an endocrine transcriptional program and the generation of CSCs in quasimesenchymal PDAC cells. Our results have clinical implications for PDAC patients, who in addition to eradication of tumor cells have a need for replacement of insulin-producing cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA