Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EClinicalMedicine ; 39: 101082, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34458708

RESUMEN

BACKGROUND: The extent to which children and adolescents contribute to SARS-CoV-2 transmission remains not fully understood. Novel high-capacity testing methods may provide real-time epidemiological data in educational settings helping to establish a rational approach to prevent and minimize SARS-CoV-2 transmission. We investigated whether pooling of samples for SARS-CoV-2 detection by RT-qPCR is a sensitive and feasible high-capacity diagnostic strategy for surveillance of SARS-CoV-2 infections in schools. METHODS: In this study, students and school staff of 14 educational facilities in Germany were tested sequentially between November 9 and December 23, 2020, two or three times per week for at least three consecutive weeks. Participants were randomized for evaluation of two different age adjusted swab sampling methods (oropharyngeal swabs or buccal swabs compared to saliva swabs using a 'lolli method'). Swabs were collected and pooled for SARS-CoV-2 RT-qPCR. Individuals of positive pooled tests were retested by RT-qPCR the same or the following day. Positive individuals were quarantined while the SARS-CoV-2 negative individuals remained in class with continued pooled RT-qPCR surveillance. The study is registered with the German Clinical Trials register (registration number: DRKS00023911). FINDINGS: 5,537 individuals were eligible and 3970 participants were enroled and included in the analysis. In students, a total of 21,978 swabs were taken and combined in 2218 pooled RT-qPCR tests. We detected 41 positive pooled tests (1·8%) leading to 36 SARS-CoV-2 cases among students which could be identified by individual re-testing. The cumulative 3-week incidence for primary schools was 564/100,000 (6/1064, additionally 1 infection detected in week 4) and 1249/100,000 (29/2322) for secondary schools. In secondary schools, there was no difference in the number of SARS-CoV-2 positive students identified from pooled oropharyngeal swabs compared to those identified from pooled saliva samples (lolli method) (14 vs. 15 cases; 1·3% vs. 1·3%; OR 1.1; 95%-CI 0·5-2·5). A single secondary school accounted for 17 of 36 cases (47%) indicating a high burden of asymptomatic prevalent SARS-CoV-2 cases in the respective school and community. INTERPRETATION: In educational settings, SARS-CoV-2 screening by RT-qPCR-based pooled testing with easily obtainable saliva samples is a feasible method to detect incident cases and observe transmission dynamics. FUNDING: Federal Ministry of education and research (BMBF; Project B-FAST in "NaFoUniMedCovid19"; registration number: 01KX2021).

2.
J Biomol Screen ; 20(8): 976-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25873558

RESUMEN

Our approach aims to optimize postscreening target validation strategies using viral vector-driven RNA interference (RNAi) cell models. The RNAiONE validation platform is an array of plasmid-based expression vectors that each drives tandem expression of the gene of interest (GOI) with one small hairpin RNA (shRNA) from a set of computed candidate sequences. The best-performing shRNA (>85% silencing efficiency) is then integrated in an inducible, all-in-one lentiviral vector to transduce pharmacologically relevant cell types that endogenously express the GOI. VariCHECK is used subsequently to combine the inducible knockdown with an equally inducible rescue of the GOI for ON-target phenotype verification. The complete RNAiONE-VariCHECK system relies on three key elements to ensure high predictability: (1) maximized silencing efficiencies by a focused shRNA validation process, (2) homogeneity of the RNAi cell pools by application of sophisticated viral vector technologies, and (3) exploiting the advantages of inducible expression systems. By using a reversible expression system, our strategy adds critical information to hot candidates from RNAi screens and avoids potential side effects that may be caused by other, irreversible genomic manipulation methods such as transcription activator-like effector nucleases (TALEN) or clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas). This approach will add credibility to top-hit screening candidates and protect researchers from costly misinterpretations early in the preclinical drug development process.


Asunto(s)
Vectores Genéticos/genética , Lentivirus/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Línea Celular , Citometría de Flujo , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Fenotipo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...