Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
medRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38765974

RESUMEN

HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome and has shown promise in detecting genomic rearrangements in translational research studies. To evaluate HiC as a potential clinical diagnostic platform, analytical concordance with routine laboratory testing was assessed using primary pediatric leukemia and sarcoma specimens previously positive for clinically significant genomic rearrangements. Archived specimen types tested included viable and nonviable frozen leukemic cells, as well as formalin-fixed paraffin-embedded (FFPE) tumor tissues. Initially, pediatric acute myeloid leukemia (AML) and alveolar rhabdomyosarcoma (A-RMS) specimens with known genomic rearrangements were subjected to HiC analysis to assess analytical concordance. Subsequently, a discovery cohort consisting of AML and acute lymphoblastic leukemia (ALL) cases with no known genomic rearrangements based on prior clinical diagnostic testing were evaluated to determine whether HiC could detect rearrangements. Using a standard sequencing depth of 50 million raw read-pairs per sample, or approximately 5X raw genomic coverage, 100% concordance was observed between HiC and previous clinical cytogenetic and molecular testing. In the discovery cohort, a clinically relevant gene fusion was detected in 45% of leukemia cases (5/11). This study demonstrates the value of HiC sequencing to medical diagnostic testing as it identified several clinically significant rearrangements, including those that might have been missed by current clinical testing workflows. Key points: HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome, facilitating detection of genomic rearrangements.HiC was 100% concordant with clinical diagnostic testing workflows for detecting clinically significant genomic rearrangements in pediatric leukemia and rhabdomyosarcoma specimens.HiC detected clinically significant genomic rearrangements not previously detected by prior clinical cytogenetic and molecular testing.HiC performed well with archived non-viable and viable frozen leukemic cell samples, as well as archived formalin-fixed paraffin-embedded tumor tissue specimens.

3.
Nat Struct Mol Biol ; 31(3): 498-512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182927

RESUMEN

Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Decitabina/farmacología , Decitabina/uso terapéutico , Decitabina/metabolismo , Epigenoma , Metilación de ADN/genética , Cromatina , Epigénesis Genética , ADN/metabolismo , Regulación Neoplásica de la Expresión Génica
4.
Nat Commun ; 14(1): 2300, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085539

RESUMEN

Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains ('neo-TADs') caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.


Asunto(s)
Ependimoma , Recurrencia Local de Neoplasia , Niño , Humanos , Preescolar , Recurrencia Local de Neoplasia/genética , Cromosomas , Mapeo Cromosómico , Ependimoma/genética , Ependimoma/patología , Genoma , Cromatina/genética
5.
Gigascience ; 112022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946988

RESUMEN

BACKGROUND: Studies in vertebrate genomics require sampling from a broad range of tissue types, taxa, and localities. Recent advancements in long-read and long-range genome sequencing have made it possible to produce high-quality chromosome-level genome assemblies for almost any organism. However, adequate tissue preservation for the requisite ultra-high molecular weight DNA (uHMW DNA) remains a major challenge. Here we present a comparative study of preservation methods for field and laboratory tissue sampling, across vertebrate classes and different tissue types. RESULTS: We find that storage temperature was the strongest predictor of uHMW fragment lengths. While immediate flash-freezing remains the sample preservation gold standard, samples preserved in 95% EtOH or 20-25% DMSO-EDTA showed little fragment length degradation when stored at 4°C for 6 hours. Samples in 95% EtOH or 20-25% DMSO-EDTA kept at 4°C for 1 week after dissection still yielded adequate amounts of uHMW DNA for most applications. Tissue type was a significant predictor of total DNA yield but not fragment length. Preservation solution had a smaller but significant influence on both fragment length and DNA yield. CONCLUSION: We provide sample preservation guidelines that ensure sufficient DNA integrity and amount required for use with long-read and long-range sequencing technologies across vertebrates. Our best practices generated the uHMW DNA needed for the high-quality reference genomes for phase 1 of the Vertebrate Genomes Project, whose ultimate mission is to generate chromosome-level reference genome assemblies of all ∼70,000 extant vertebrate species.


Asunto(s)
Benchmarking , Dimetilsulfóxido , Animales , ADN/genética , Ácido Edético , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Peso Molecular , Análisis de Secuencia de ADN/métodos
6.
Cell ; 184(21): 5419-5431.e16, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34597582

RESUMEN

Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.


Asunto(s)
Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , VIH-1/fisiología , Proteínas del Envoltorio Viral/metabolismo , Liberación del Virus , Animales , Muerte Celular , Supervivencia Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/ultraestructura , Células HEK293 , Células HeLa , Humanos , Interferones/metabolismo , Mamíferos/genética , Ratones Endogámicos C57BL , ARN/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Sci Transl Med ; 13(610): eabd8995, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34516831

RESUMEN

Vitiligo is an autoimmune skin disease characterized by the targeted destruction of melanocytes by T cells. Cytokine signaling between keratinocytes and T cells results in CD8+ T cell infiltration of vitiligo lesions, but the full scope of signals required to coordinate autoimmune responses is not completely understood. We performed single-cell RNA sequencing on affected and unaffected skin from patients with vitiligo, as well as healthy controls, to define the role of each cell type in coordinating autoimmunity during disease progression. We confirmed that type 1 cytokine signaling occupied a central role in disease, but we also found that this pathway was used by regulatory T cells (Tregs) to restrain disease progression in nonlesional skin. We determined that CCL5-CCR5 signaling served as a chemokine circuit between effector CD8+ T cells and Tregs, and mechanistic studies in a mouse model of vitiligo revealed that CCR5 expression on Tregs was required to suppress disease in vivo but not in vitro. CCR5 was not required for Treg recruitment to skin but appeared to facilitate Treg function by properly positioning these cells within the skin. Our data provide critical insights into the pathogenesis of vitiligo and uncover potential opportunities for therapeutic interventions.


Asunto(s)
ARN Citoplasmático Pequeño , Receptores CCR5 , Linfocitos T Reguladores/inmunología , Vitíligo , Humanos , Receptores CCR5/genética , Análisis de la Célula Individual , Vitíligo/genética , Vitíligo/inmunología
8.
J Virol ; 95(20): e0103021, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379508

RESUMEN

We have developed a flexible platform for delivery of proteins to target cell interiors using paramyxovirus-like particles. The key enabling feature is an appendage, 15 to 30 amino acid residues in length, that is added to cargo proteins and that induces them to bind to the viral matrix (M) protein during virus-like particle (VLP) assembly. The cargo is then incorporated within the VLPs as they bud, using the same interactions that normally direct viral genome packaging. The appendage can also serve as an epitope tag for cargo detection using a nucleocapsid (NP) protein-specific monoclonal antibody. Using this approach, we generated Renilla luciferase-loaded VLPs, green fluorescent protein-loaded VLPs, superoxide dismutase-loaded VLPs, and Cre recombinase-loaded VLPs. In each case, the VLPs could efficiently deliver their functional cargos to target cells and, in the case of Cre recombinase, to target cell nuclei. The strategy was employed using two different VLP production platforms, one based on parainfluenza virus 5 (PIV5) and the other based on Nipah virus, and in both cases efficient cargo packaging and delivery could be achieved. These findings provide a foundation for development of paramyxovirus-like particles as tools for safe and efficient delivery of therapeutic proteins to cells and tissues. IMPORTANCE Therapeutic proteins including transcription factors and genome editors have enormous clinical potential but are currently limited in part due to the challenges of safely and efficiently delivering these proteins to the interiors of target cells. Here, we have developed a new strategy for protein delivery based on manipulation of paramyxovirus genome packaging interactions.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Paramyxoviridae/metabolismo , Proteínas de la Matriz Viral/metabolismo , Ingeniería Genética/métodos , Humanos , Luciferasas de Renilla/metabolismo , Nucleocápside/metabolismo , Paramyxoviridae/genética , Virión/metabolismo , Ensamble de Virus
9.
Curr Opin Insect Sci ; 44: 55-63, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33771735

RESUMEN

Nectar is a sugary, aqueous solution that plants offer as a reward to animal mutualists for visitation. Since nectars are so nutrient-rich, they often harbor significant microbial communities, which can be pathogenic, benign, or even sometimes beneficial to plant fitness. Through recent advances, it is now clear that these microbes alter nectar chemistry, which in turn influences mutualist behavior (e.g. pollinator visitation). To counteract unwanted microbial growth, nectars often contain antimicrobial compounds, especially in the form of proteins, specialized (secondary) metabolites, and metals. This review covers our current understanding of nectar antimicrobials, as well as their interplay with both microbes and insect visitors.


Asunto(s)
Antiinfecciosos/metabolismo , Flores/fisiología , Insectos/fisiología , Néctar de las Plantas/metabolismo , Proteínas de Plantas/fisiología , Animales , Conducta Animal , Metales , Polinización , Metabolismo Secundario
10.
Nat Biotechnol ; 39(3): 309-312, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33288905

RESUMEN

Haplotype-resolved or phased genome assembly provides a complete picture of genomes and their complex genetic variations. However, current algorithms for phased assembly either do not generate chromosome-scale phasing or require pedigree information, which limits their application. We present a method named diploid assembly (DipAsm) that uses long, accurate reads and long-range conformation data for single individuals to generate a chromosome-scale phased assembly within 1 day. Applied to four public human genomes, PGP1, HG002, NA12878 and HG00733, DipAsm produced haplotype-resolved assemblies with minimum contig length needed to cover 50% of the known genome (NG50) up to 25 Mb and phased ~99.5% of heterozygous sites at 98-99% accuracy, outperforming other approaches in terms of both contiguity and phasing completeness. We demonstrate the importance of chromosome-scale phased assemblies for the discovery of structural variants (SVs), including thousands of new transposon insertions, and of highly polymorphic and medically important regions such as the human leukocyte antigen (HLA) and killer cell immunoglobulin-like receptor (KIR) regions. DipAsm will facilitate high-quality precision medicine and studies of individual haplotype variation and population diversity.


Asunto(s)
Cromosomas Humanos , Genoma Humano , Haplotipos , Algoritmos , Heterocigoto , Humanos , Polimorfismo de Nucleótido Simple
11.
Nature ; 585(7823): 79-84, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663838

RESUMEN

After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.


Asunto(s)
Cromosomas Humanos X/genética , Genoma Humano/genética , Telómero/genética , Centrómero/genética , Islas de CpG/genética , Metilación de ADN , ADN Satélite/genética , Femenino , Humanos , Mola Hidatiforme/genética , Masculino , Embarazo , Reproducibilidad de los Resultados , Testículo/metabolismo
12.
Genome Biol ; 20(1): 255, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779666

RESUMEN

BACKGROUND: The 3-dimensional (3D) conformation of chromatin inside the nucleus is integral to a variety of nuclear processes including transcriptional regulation, DNA replication, and DNA damage repair. Aberrations in 3D chromatin conformation have been implicated in developmental abnormalities and cancer. Despite the importance of 3D chromatin conformation to cellular function and human health, little is known about how 3D chromatin conformation varies in the human population, or whether DNA sequence variation between individuals influences 3D chromatin conformation. RESULTS: To address these questions, we perform Hi-C on lymphoblastoid cell lines from 20 individuals. We identify thousands of regions across the genome where 3D chromatin conformation varies between individuals and find that this variation is often accompanied by variation in gene expression, histone modifications, and transcription factor binding. Moreover, we find that DNA sequence variation influences several features of 3D chromatin conformation including loop strength, contact insulation, contact directionality, and density of local cis contacts. We map hundreds of quantitative trait loci associated with 3D chromatin features and find evidence that some of these same variants are associated at modest levels with other molecular phenotypes as well as complex disease risk. CONCLUSION: Our results demonstrate that common DNA sequence variants can influence 3D chromatin conformation, pointing to a more pervasive role for 3D chromatin conformation in human phenotypic variation than previously recognized.


Asunto(s)
Secuencia de Bases , Variación Genética , Genoma Humano , Conformación de Ácido Nucleico , Epigenoma , Humanos , Sitios de Carácter Cuantitativo , Transcriptoma
13.
Mol Cell ; 76(3): 453-472.e8, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31519520

RESUMEN

MYOD-directed fibroblast trans-differentiation into skeletal muscle provides a unique model to investigate how one transcription factor (TF) reconfigures the three-dimensional chromatin architecture to control gene expression, which is otherwise achieved by the combinatorial activities of multiple TFs. Integrative analysis of genome-wide high-resolution chromatin interactions, MYOD and CTCF DNA-binding profile, and gene expression, revealed that MYOD directs extensive re-wiring of interactions involving cis-regulatory and structural genomic elements, including promoters, enhancers, and insulated neighborhoods (INs). Re-configured INs were hot-spots of differential interactions, whereby MYOD binding to highly constrained sequences at IN boundaries and/or inside INs led to alterations of promoter-enhancer interactions to repress cell-of-origin genes and to activate muscle-specific genes. Functional evidence shows that MYOD-directed re-configuration of chromatin interactions temporally preceded the effect on gene expression and was mediated by direct MYOD-DNA binding. These data illustrate a model whereby a single TF alters multi-loop hubs to drive somatic cell trans-differentiation.


Asunto(s)
Transdiferenciación Celular , Reprogramación Celular , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Fibroblastos/metabolismo , Desarrollo de Músculos , Proteína MioD/metabolismo , Mioblastos Esqueléticos/metabolismo , Animales , Sitios de Unión , Línea Celular , Transdiferenciación Celular/genética , Cromatina/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Desarrollo de Músculos/genética , Proteína MioD/genética , Conformación de Ácido Nucleico , Fenotipo , Unión Proteica , Relación Estructura-Actividad , Transcripción Genética
14.
Nat Genet ; 51(10): 1442-1449, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501517

RESUMEN

A large number of putative cis-regulatory sequences have been annotated in the human genome, but the genes they control remain poorly defined. To bridge this gap, we generate maps of long-range chromatin interactions centered on 18,943 well-annotated promoters for protein-coding genes in 27 human cell/tissue types. We use this information to infer the target genes of 70,329 candidate regulatory elements and suggest potential regulatory function for 27,325 noncoding sequence variants associated with 2,117 physiological traits and diseases. Integrative analysis of these promoter-centered interactome maps reveals widespread enhancer-like promoters involved in gene regulation and common molecular pathways underlying distinct groups of human traits and diseases.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Cromatina/genética , Genómica , Humanos , Factores de Transcripción/genética
15.
PLoS Comput Biol ; 15(8): e1007273, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31433799

RESUMEN

Long-read sequencing and novel long-range assays have revolutionized de novo genome assembly by automating the reconstruction of reference-quality genomes. In particular, Hi-C sequencing is becoming an economical method for generating chromosome-scale scaffolds. Despite its increasing popularity, there are limited open-source tools available. Errors, particularly inversions and fusions across chromosomes, remain higher than alternate scaffolding technologies. We present a novel open-source Hi-C scaffolder that does not require an a priori estimate of chromosome number and minimizes errors by scaffolding with the assistance of an assembly graph. We demonstrate higher accuracy than the state-of-the-art methods across a variety of Hi-C library preparations and input assembly sizes. The Python and C++ code for our method is openly available at https://github.com/machinegun/SALSA.


Asunto(s)
Cromosomas Humanos/genética , Genoma Humano , Genómica/métodos , Algoritmos , Animales , Biología Computacional , Simulación por Computador , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Biblioteca Genómica , Genómica/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos
16.
Nat Commun ; 10(1): 1054, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837461

RESUMEN

While genetic variation at chromatin loops is relevant for human disease, the relationships between contact propensity (the probability that loci at loops physically interact), genetics, and gene regulation are unclear. We quantitatively interrogate these relationships by comparing Hi-C and molecular phenotype data across cell types and haplotypes. While chromatin loops consistently form across different cell types, they have subtle quantitative differences in contact frequency that are associated with larger changes in gene expression and H3K27ac. For the vast majority of loci with quantitative differences in contact frequency across haplotypes, the changes in magnitude are smaller than those across cell types; however, the proportional relationships between contact propensity, gene expression, and H3K27ac are consistent. These findings suggest that subtle changes in contact propensity have a biologically meaningful role in gene regulation and could be a mechanism by which regulatory genetic variants in loop anchors mediate effects on expression.


Asunto(s)
Cromatina/genética , ADN/genética , Regulación de la Expresión Génica , Histonas/genética , Sitios de Carácter Cuantitativo/genética , Adolescente , Adulto , Anciano , Línea Celular , Cromatina/metabolismo , ADN/metabolismo , Femenino , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Persona de Mediana Edad , Miocitos Cardíacos , Conformación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Adulto Joven
17.
Viruses ; 11(2)2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30708959

RESUMEN

To define the links between paramyxovirus budding and cellular ESCRT machinery, we previously identified angiomotin-like 1 (AMOTL1) in a screen for host factors that bind to the matrix (M) protein of parainfluenza virus 5 (PIV5). This protein harbors three L/PPXY sequences, allowing it to interact with WW domain containing proteins including NEDD4 family members. We hypothesize that paramyxoviruses use AMOTL1 as a linker to indirectly recruit the same NEDD4 ubiquitin ligases for budding that other enveloped viruses recruit directly through their PPXY late domains. In support of this hypothesis, we found that AMOTL1 could link together M proteins and NEDD4 family proteins in three-way co-IP experiments. Both PIV5 and mumps virus M proteins could be linked to the NEDD4 family proteins NEDD4-1, NEDD4L, and NEDL1, provided that AMOTL1 was co-expressed as a bridging protein. AMOT and AMOTL2 could not substitute for AMOTL1, as they lacked the ability to bind with paramyxovirus M proteins. Attachment of a PPXY late domain sequence to PIV5 M protein obviated the need for AMOTL1 as a linker between M and NEDD4 proteins. Together, these results suggest a novel host factor recruitment strategy for paramyxoviruses to achieve particle release.


Asunto(s)
Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Virus de la Parainfluenza 5/fisiología , Proteínas de la Matriz Viral/metabolismo , Liberación del Virus , Angiomotinas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Proteínas de la Membrana/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Unión Proteica , Infecciones por Rubulavirus , Ubiquitinación , Proteínas de la Matriz Viral/genética
18.
PLoS One ; 13(11): e0208054, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30496256

RESUMEN

There is an established relationship between primary DNA sequence, secondary and tertiary chromatin structure, and transcriptional activity, suggesting that observed differences in one of these properties may reflect changes in the others. Here, we exploit these relationships to show that variations in DNA structure can be used to identify a wide range of genomic alterations in mammalian samples. In this proof-of-concept study we characterized and compared genome-wide histone occupancy by ChIP-Seq, DNA accessibility by ATAC-Seq, and chromosomal conformation by Hi-C for five CRISPR/Cas9-modified mammalian cell lines and their unmodified parent strains, as well as in one modified tissue sample and its parent strain. The results showed that the impact of genomic alterations on each of the levels of DNA organization varied depending on mutation type (insertion or deletion), size, and genomic location. The largest genomic alterations we identified included chromosomal rearrangements and deletions (greater than 200 Kb) in four of the modified cell lines, which can be difficult to identify by standard whole genome sequencing analysis. This multi-level DNA organizational analysis provides a sensitive approach for identifying a wide range of genomic and epigenomic perturbations that can be utilized for biomedical and biosecurity applications.


Asunto(s)
Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Análisis de Secuencia de ADN/métodos , Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , ADN , Epigenómica/métodos , Genoma Humano/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/genética , Humanos , Mutación , Prueba de Estudio Conceptual , Relación Estructura-Actividad
19.
J Exp Bot ; 69(22): 5587-5597, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30169819

RESUMEN

Nectar is one of the key rewards mediating plant-mutualist interactions. In addition to sugars, nectars often contain many other compounds with important biological functions, including proteins. This study was undertaken to assess the proteinaceous content of Brassica rapa nectar. SDS-PAGE analysis of raw B. rapa nectar revealed the presence of ~10 proteins, with a major band at ~10 kDa. This major band was found to contain a non-specific lipid transfer protein encoded by B. rapa locus Bra028980 and subsequently termed BrLTP2.1. Sequence analysis of BrLTP2.1 predicted the presence of a signal peptide required for secretion from the cell, eight cysteines, and a mature molecular mass of 7.3 kDa. Constitutively expressed BrLTP2.1-GFP in Arabidopsis displayed accumulation patterns consistent with secretion from nectary cells. BrLTP2.1 was also found to have relatively high sequence similarity to non-specific lipid-transfer proteins with known functions in plant defense, including Arabidopsis DIR1. Heterologously expressed and purified BrLTP2.1 was extremely heat stable and bound strongly to saturated free fatty acids, but not methyl jasmonate. Recombinant BrLTP2.1 also had direct antimicrobial activity against an extensive range of plant pathogens, being particularly effective against necrotrophic fungi. Taken together, these results suggest that BrLTP2.1 may function to prevent microbial growth in nectars.


Asunto(s)
Antifúngicos/química , Brassica rapa/genética , Proteínas Portadoras/genética , Néctar de las Plantas/química , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Brassica rapa/metabolismo , Proteínas Portadoras/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
20.
Front Plant Sci ; 9: 1060, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30135692

RESUMEN

Over 75% of crop species produce nectar and are dependent on pollinators to achieve maximum seed set, yet little is known about the mechanisms regulating nectar secretion. The phytohormone jasmonic acid (JA) is recognized to be involved in several plant processes including development and defense. JA was also recently shown to positively influence nectar secretion in both floral and extrafloral nectaries. For example, endogenous JA levels peak in flowers just prior to nectar secretion, but the details of how JA regulates nectar secretion have yet to be elucidated. We have found that the octadecanoid pathway does indeed play a role in the production and regulation of floral nectar in Arabidopsis. Null alleles for several JA biosynthesis and response genes had significantly reduced amounts of nectar, as well as altered expression of genes known to be involved in nectar production. We additionally identified crosstalk between the JA and auxin response pathways in nectaries. For example, the nectar-less JA synthesis mutant aos-2 showed no auxin response in nectaries, but both nectar production and the auxin response were restored upon exogenous JA and auxin treatment. Conversely, coi1-1, a JA-Ile-insensitive receptor mutant, displayed no auxin response in nectaries under any circumstance, even in older flowers that produced nectar. Surprisingly, opr3-1, a mutant for 12-oxophytodienoate reductase 3 [an enzyme further down the JA biosynthetic pathway that reduces 12-oxo phytodienoic acid (OPDA)], produced no nectar in newly opened flowers, but did secrete nectar in older flowers. Furthermore, a similar phenotype was observed in coi1-1. Cumulatively, these observations strongly suggest an indispensable role for an octadecanoic acid- and auxin-dependent, but JA- and COI1-dispensible, pathway in regulating nectar production in Arabidopsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...