Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 8: 589717, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330468

RESUMEN

Endothelial cells appear to emerge from diverse progenitors. However, to which extent their developmental origin contributes to define their cellular and molecular characteristics remains largely unknown. Here, we report that a subset of endothelial cells that emerge from the tailbud possess unique molecular characteristics that set them apart from stereotypical lateral plate mesoderm (LPM)-derived endothelial cells. Lineage tracing shows that these tailbud-derived endothelial cells arise at mid-somitogenesis stages, and surprisingly do not require Npas4l or Etsrp function, indicating that they have distinct spatiotemporal origins and are regulated by distinct molecular mechanisms. Microarray and single cell RNA-seq analyses reveal that somitogenesis- and neurogenesis-associated transcripts are over-represented in these tailbud-derived endothelial cells, suggesting that they possess a unique transcriptomic signature. Taken together, our results further reveal the diversity of endothelial cells with respect to their developmental origin and molecular properties, and provide compelling evidence that the molecular characteristics of endothelial cells may reflect their distinct developmental history.

2.
Stem Cell Res Ther ; 8(1): 132, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28583172

RESUMEN

BACKGROUND: Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. METHODS: We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. RESULTS: The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. CONCLUSIONS: Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular/genética , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Células Madre Pluripotentes Inducidas/citología , Plásmidos/genética , Análisis de Varianza , Diferenciación Celular/genética , Línea Celular , Expresión Génica , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Plásmidos/metabolismo , Estadísticas no Paramétricas
3.
Nat Commun ; 6: 7739, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26204127

RESUMEN

Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output.


Asunto(s)
Vasos Sanguíneos/embriología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción GATA2/metabolismo , Proteínas HMGB/fisiología , Hemangioblastos/fisiología , Factores de Transcripción SOXF/fisiología , Animales , Femenino , Genes Reporteros , Hematopoyesis , Ratones , Embarazo , Receptor Notch1/metabolismo
4.
Exp Hematol ; 42(8): 707-16, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25014737

RESUMEN

The mouse is integral to our understanding of hematopoietic biology. Serving as a mammalian model system, the mouse has allowed for the discovery of self-renewing multipotent stem cells, provided functional assays to establish hematopoietic stem cell identity and function, and has become a tool for understanding the differentiation capacity of early hematopoietic progenitors. The advent of genetic technology has strengthened the use of mouse models for identifying critical pathways in hematopoiesis. Full genetic knockout models, tissue-specific gene deletion, and genetic overexpression models create a system for the dissection and identification of critical cellular and genetic processes underlying hematopoiesis. However, the murine model has also introduced perplexity in understanding developmental hematopoiesis. Requisite in utero development paired with circulation has historically made defining sites of origin and expansion in the murine hematopoietic system challenging. However, the genetic accessibility of the mouse as a mammalian system has identified key regulators of hematopoietic development. Technological advances continue to generate extremely powerful tools that when translated to the murine system provide refined in vivo spatial and temporal control of genetic deletion or overexpression. Future advancements may add the ability of reversible genetic manipulation. In this review, we describe the major contributions of the murine model to our understanding of hematopoiesis.


Asunto(s)
Hematopoyesis , Animales , Trasplante de Médula Ósea , Código de Barras del ADN Taxonómico , Células Madre Hematopoyéticas/fisiología , Humanos , Ratones , Modelos Animales
5.
Mol Cells ; 35(2): 166-72, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23456338

RESUMEN

Previous studies have identified two zebrafish mutants, cloche and groom of cloche, which lack the majority of the endothelial lineage at early developmental stages. However, at later stages, these avascular mutant embryos generate rudimentary vessels, indicating that they retain the ability to generate endothelial cells despite this initial lack of endothelial progenitors. To further investigate molecular mechanisms that allow the emergence of the endothelial lineage in these avascular mutant embryos, we analyzed the gene expression profile using microarray analysis on isolated endothelial cells. We find that the expression of the genes characteristic of the mesodermal lineages are substantially elevated in the kdrl (+) cells isolated from avascular mutant embryos. Subsequent validation and analyses of the microarray data identifies Sox11b, a zebrafish ortholog of SRY-related HMG box 11 (SOX11), which have not previously implicated in vascular development. We further define the function sox11b during vascular development, and find that Sox11b function is essential for developmental angiogenesis in zebrafish embryos, specifically regulating sprouting angiogenesis. Taken together, our analyses illustrate a complex regulation of endothelial specification and differentiation during vertebrate development.


Asunto(s)
Endotelio Vascular/citología , Factores de Transcripción SOX/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/metabolismo , Endotelio Vascular/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Análisis por Micromatrices , Mutación , Factores de Transcripción SOX/metabolismo , Transducción de Señal , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Biochem Biophys Res Commun ; 430(4): 1212-6, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23266606

RESUMEN

Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.


Asunto(s)
Aorta/crecimiento & desarrollo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular/fisiología , Venas/crecimiento & desarrollo , Animales , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/crecimiento & desarrollo
7.
Circ Res ; 111(5): 564-74, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22777006

RESUMEN

RATIONALE: Among the extracellular modulators of Bmp (bone morphogenetic protein) signaling, Bmper (Bmp endothelial cell precursor-derived regulator) both enhances and inhibits Bmp signaling. Recently we found that Bmper modulates Bmp4 activity via a concentration-dependent, endocytic trap-and-sink mechanism. OBJECTIVE: To investigate the molecular mechanisms required for endocytosis of the Bmper/Bmp4 and signaling complex and determine the mechanism of Bmper's differential effects on Bmp4 signaling. METHODS AND RESULTS: Using an array of biochemical and cell biology techniques, we report that LRP1 (LDL receptor-related protein 1), a member of the LDL receptor family, acts as an endocytic receptor for Bmper and a coreceptor of Bmp4 to mediate the endocytosis of the Bmper/Bmp4 signaling complex. Furthermore, we demonstrate that LRP1-dependent Bmper/Bmp4 endocytosis is essential for Bmp4 signaling, as evidenced by the phenotype of lrp1-deficient zebrafish, which have abnormal cardiovascular development and decreased Smad1/5/8 activity in key vasculogenic structures. CONCLUSIONS: Together, these data reveal a novel role for LRP1 in the regulation of Bmp4 signaling by regulating receptor complex endocytosis. In addition, these data introduce LRP1 as a critical regulator of vascular development. These observations demonstrate Bmper's ability to fine-tune Bmp4 signaling at the single-cell level, unlike the spatial regulatory mechanisms applied by other Bmp modulators.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis/fisiología , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteína Morfogenética Ósea 4/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Portadoras/genética , Línea Celular , Movimiento Celular/fisiología , Células Endoteliales/citología , Células HEK293 , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Fenotipo , ARN Interferente Pequeño/genética , Receptores de LDL/genética , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética , Pez Cebra , Proteínas de Pez Cebra/genética
8.
Methods Mol Biol ; 843: 59-67, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22222521

RESUMEN

Visualizing the circulatory pattern in developing embryos becomes an essential technique for the field of cardiovascular biology. In the zebrafish model system, there are currently several techniques available to visualize the circulatory pattern. Microangiography is a simple technique in which a fluorescent dye is injected directly into the Sinus Venosus and/or the Posterior Cardinal Vein, allowing for the rapid labeling and easy detection of patent vessels. Here, we compare microangiography to other vascular labeling techniques, describe the benefits and potential applications of microangiography, and give step by step instructions for microangiography.


Asunto(s)
Angiografía/métodos , Vasos Sanguíneos/embriología , Pez Cebra/embriología , Angiografía/instrumentación , Animales , Vasos Sanguíneos/anatomía & histología , Microinyecciones , Pez Cebra/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...