Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1415839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308865

RESUMEN

The question whether interference with the ubiquitous splicing machinery can lead to cell-type specific perturbation of cellular function is addressed here by T cell specific ablation of the general U5 snRNP assembly factor CD2BP2/U5-52K. This protein defines the family of nuclear GYF domain containing proteins that are ubiquitously expressed in eukaryotes with essential functions ascribed to early embryogenesis and organ function. Abrogating CD2BP2/U5-52K in T cells, allows us to delineate the consequences of splicing machinery interferences for T cell development and function. Increased T cell lymphopenia and T cell death are observed upon depletion of CD2BP2/U5-52K. A substantial increase in exon skipping coincides with the observed defect in the proliferation/differentiation balance in the absence of CD2BP2/U5-52K. Prominently, skipping of exon 7 in Mdm4 is observed, coinciding with upregulation of pro-apoptotic gene expression profiles upon CD2BP2/U5-52K depletion. Furthermore, we observe enhanced sensitivity of naïve T cells compared to memory T cells to changes in CD2BP2/U5-52K levels, indicating that depletion of this general splicing factor leads to modulation of T cell homeostasis. Given the recent structural characterization of the U5 snRNP and the crosslinking mass spectrometry data given here, design of inhibitors of the U5 snRNP conceivably offers new ways to manipulate T cell function in settings of disease.


Asunto(s)
Homeostasis , Linfocitos T , Animales , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones , Apoptosis , Diferenciación Celular/inmunología , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/inmunología , Proliferación Celular , Linfopenia/inmunología , Linfopenia/genética , Empalme del ARN
2.
Brain ; 143(7): 2119-2138, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32572454

RESUMEN

Syntaxin 1B (STX1B) is a core component of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that is critical for the exocytosis of synaptic vesicles in the presynapse. SNARE-mediated vesicle fusion is assisted by Munc18-1, which recruits STX1B in the auto-inhibited conformation, while Munc13 catalyses the fast and efficient pairing of helices during SNARE complex formation. Mutations within the STX1B gene are associated with epilepsy. Here we analysed three STX1B mutations by biochemical and electrophysiological means. These three paradigmatic mutations cause epilepsy syndromes of different severity, from benign fever-associated seizures in childhood to severe epileptic encephalopathies. An insertion/deletion (K45/RMCIE, L46M) mutation (STX1BInDel), causing mild epilepsy and located in the early helical Habc domain, leads to an unfolded protein unable to sustain neurotransmission. STX1BG226R, causing epileptic encephalopathies, strongly compromises the interaction with Munc18-1 and reduces expression of both proteins, the size of the readily releasable pool of vesicles, and Ca2+-triggered neurotransmitter release when expressed in STX1-null neurons. The mutation STX1BV216E, also causing epileptic encephalopathies, only slightly diminishes Munc18-1 and Munc13 interactions, but leads to enhanced fusogenicity and increased vesicular release probability, also in STX1-null neurons. Even though the synaptic output remained unchanged in excitatory hippocampal STX1B+/- neurons exogenously expressing STX1B mutants, the manifestation of clear and distinct molecular disease mechanisms by these mutants suggest that certain forms of epilepsies can be conceptualized by assigning mutations to structurally sensitive regions of the STX1B-Munc18-1 interface, translating into distinct neurophysiological phenotypes.


Asunto(s)
Epilepsia/genética , Epilepsia/metabolismo , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Sintaxina 1/genética , Animales , Genotipo , Ratones , Mutación , Fenotipo
3.
Structure ; 27(6): 977-987.e5, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31031201

RESUMEN

The scaffolding protein intersectin 1 plays important roles in clathrin-mediated endocytosis and in the replenishment of release-ready synaptic vesicles (SV). Two splice variants of intersectin's SH3A domain are expressed in the brain, and association of the neuron-specific variant with synapsin I has been shown to enable sustained neurotransmission and to be regulated by an adjacent C-terminal motif. Here, we demonstrate that the ubiquitously expressed short SH3A variant of intersectin 1 interacts with an N-terminal intramolecular sequence that operates synergistically with the C-terminal motif. NMR spectroscopic investigations show that the five-amino acid insertion into the ß strand 2 of the neuronal SH3A variant introduces conformational plasticity incompatible with binding of the N-terminal sequence. The difference in the autoregulatory mechanism of the domain's variants differentially affects its synaptic binding partners, thereby establishing alternative splicing in conjunction with autoinhibitory motif variation as a mechanism to regulate protein interaction networks.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Empalme Alternativo , Endocitosis/genética , Exones/genética , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Regulación de la Expresión Génica , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transmisión Sináptica , Dominios Homologos src
4.
Analyst ; 141(19): 5502-10, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27494002

RESUMEN

In this study the gas-phase structure of ubiquitin and its lysine-to-arginine mutants was investigated using ion mobility-mass spectrometry (IM-MS) and electron transfer dissociation-mass spectrometry (ETD-MS). Crown ether molecules were attached to positive charge sites of the proteins and the resulting non-covalent complexes were analysed. Collision induced dissociation (CID) experiments revealed relative energy differences between the wild type and the mutant crown-ether complexes. ETD-MS experiments were performed to identify the crown ether binding sites. Although not all of the binding sites could be revealed, the data confirm that the first crown ether is able to bind to the N-terminus. IM-MS experiments show a more compact structure for specific charge states of wild type ubiquitin when crown ethers are attached. However, data on ubiquitin mutants reveal that only specific lysine residues contribute to the effect of charge microsolvation. A compaction is only observed for one of the investigated mutants, in which the lysine has no proximate interaction partner. On the other hand when the lysine residues are involved in salt bridges, attachment of crown ethers has little effect on the structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...