Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1304: 342535, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637036

RESUMEN

The implementation of ion mobility spectrometry (IMS) in liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflows has become a valuable tool for improving compound annotation in metabolomics analyses by increasing peak capacity and by adding a new molecular descriptor, the collision cross section (CCS). Although some studies reported high repeatability and reproducibility of CCS determination and only few studies reported good interplatform agreement for small molecules, standardized protocols are still missing due to the lack of reference CCS values and reference materials. We present a comparison of CCS values of approximatively one hundred lipid species either commercially available or extracted from human plasma. We used three different commercial ion mobility technologies from different laboratories, drift tube IMS (DTIMS), travelling wave IMS (TWIMS) and trapped IMS (TIMS), to evaluate both instrument repeatability and interlaboratory reproducibility. We showed that CCS discrepancies of 0.3% (average) could occur depending on the data processing software tools. Moreover, eleven CCS calibrants were evaluated yielding mean RSD below 2% for eight calibrants, ESI Low concentration tuning mix (Tune Mix) showing the lowest RSD (< 0.5%) in both ion modes. Tune Mix calibrated CCS from the three different IMS instruments proved to be well correlated and highly reproducible (R2 > 0.995 and mean RSD ≤ 1%). More than 90% of the lipid CCS had deviations of less than 1%, demonstrating high comparability between techniques, and the possibility to use the CCS as molecular descriptor. We highlighted the need of standardized procedures for calibration, data acquisition, and data processing. This work demonstrates that using harmonized analytical conditions are required for interplatform reproducibility for CCS determination of human plasma lipids.


Asunto(s)
Lípidos , Metabolómica , Humanos , Reproducibilidad de los Resultados
2.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630337

RESUMEN

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Asunto(s)
Muerte Celular , Etanol , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Hojas de la Planta , Sterculia , Animales , Ratas , Caspasa 3/metabolismo , Etanol/administración & dosificación , Etanol/química , Etanol/toxicidad , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ratas Wistar , Sterculia/química , Hojas de la Planta/química , Plantas Medicinales/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Lactato Deshidrogenasas/metabolismo , Proteína GAP-43/análisis , Apoptosis/genética , Estrés Oxidativo/genética , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Masculino , Femenino , Células Cultivadas , Muerte Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas , Metabolismo Secundario
3.
J Am Soc Mass Spectrom ; 35(4): 696-704, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38430122

RESUMEN

Collision cross section (CCS) values determined in ion mobility-mass spectrometry (IM-MS) are increasingly employed as additional descriptors in metabolomics studies. CCS values must therefore be reproducible and the causes of deviations must be carefully known and controlled. Here, we analyzed lipid standards by trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) to evaluate the effects of solvent and flow rate in flow injection analysis (FIA), as well as electrospray source parameters including nebulizer gas pressure, drying gas flow rate, and temperature, on the ion mobility and CCS values. The stability of ion mobility experiments was studied over 10 h, which established the need for a delay-time of 20 min to stabilize source parameters (mostly pressure and temperature). Modifications of electrospray source parameters induced shifts of ion mobility peaks and even the occurrence of an additional peak in the ion mobility spectra. This behavior could be essentially explained by ion-solvent cluster formation. Changes in source parameters were also found to impact CCS value measurements, resulting in deviations up to 0.8%. However, internal calibration with the Tune Mix calibrant reduced the CCS deviations to 0.1%. Thus, optimization of source parameters is essential to achieve a good desolvation of lipid ions and avoid misinterpretation of peaks in ion mobility spectra due to solvent effects. This work highlights the importance of internal calibration to ensure interoperable CCS values, usable in metabolomics annotation.

4.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903305

RESUMEN

Pharmaceutical analysis refers to an area of analytical chemistry that deals with active compounds either by themselves (drug substance) or when formulated with excipients (drug product). In a less simplistic way, it can be defined as a complex science involving various disciplines, e.g., drug development, pharmacokinetics, drug metabolism, tissue distribution studies, and environmental contamination analyses. As such, the pharmaceutical analysis covers drug development to its impact on health and the environment. Moreover, due to the need for safe and effective medications, the pharmaceutical industry is one of the most heavily regulated sectors of the global economy. For this reason, powerful analytical instrumentation and efficient methods are required. In the last decades, mass spectrometry has been increasingly used in pharmaceutical analysis both for research aims and routine quality controls. Among different instrumental setups, ultra-high-resolution mass spectrometry with Fourier transform instruments, i.e., Fourier transform ion cyclotron resonance (FTICR) and Orbitrap, gives access to valuable molecular information for pharmaceutical analysis. In fact, thanks to their high resolving power, mass accuracy, and dynamic range, reliable molecular formula assignments or trace analysis in complex mixtures can be obtained. This review summarizes the principles of the two main types of Fourier transform mass spectrometers, and it highlights applications, developments, and future perspectives in pharmaceutical analysis.


Asunto(s)
Desarrollo de Medicamentos , Excipientes , Espectrometría de Masas/métodos , Excipientes/química , Análisis de Fourier
5.
J AOAC Int ; 85(2): 375-83, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11990022

RESUMEN

As part of a project funded by the European Commission (EC) for the development and evaluation of multiresidue methods for analysis of drinking and related waters, 17 European laboratories evaluated a method using styrene-divinylbenzene copolymer solid-phase extraction followed by liquid chromatography with diode array detection. The main aim of the study was to evaluate whether the method meets the requirements of EC Drinking Water Directive 98/83 in terms of accuracy, precision, and detection limit for 21 pesticides according to the following requirements: limit of detection, < or =0.025 microg/L; accuracy expressed as recovery, between 75 and 125%; and precision expressed as repeatability relative standard deviation of the method, <12.5%, and as reproducibility relative standard deviation of the method, <25%. Analyses for unknown concentrations were performed with commercial bottled and tap waters. All laboratories were able to achieve detection limits of 0.01 microg/L for all pesticides except pirimicarb (0.02 microg/L). The criteria for repeatability were met for all compounds. Terbutryn in bottled water and carbendazim in tap water did not meet the criteria for reproducibility. In terms of accuracy, the method met the requirements for all pesticides in both matrixes, except for metamitron. However, several compounds (linuron, terbutryn, propazine, metobromuron, and isoproturon) showed recoveries slightly below 75%.


Asunto(s)
Residuos de Plaguicidas/análisis , Abastecimiento de Agua/análisis , Agua/análisis , Cromatografía Liquida , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA