Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3530-3533, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086280

RESUMEN

Identifying different functional regions during a brain surgery is a challenging task usually performed by highly specialized neurophysiologists. Progress in this field may be used to improve in situ brain navigation and will serve as an important building block to minimize the number of animals in preclinical brain research required by properly positioning implants intraoperatively. The study at hand aims to correlate recorded extracellular signals with the volume of origin by deep learning methods. Our work establishes connections between the position in the brain and recorded high-density neural signals. This was achieved by evaluating the performance of BLSTM, BGRU, QRNN and CNN neural network architectures on multisite electrophysiological data sets. All networks were able to successfully distinguish cortical and thalamic brain regions according to their respective neural signals. The BGRU provides the best results with an accuracy of 88.6 % and demonstrates that this classification task might be solved in higher detail while minimizing complex preprocessing steps.


Asunto(s)
Aprendizaje Automático , Roedores , Animales , Encéfalo/fisiología , Redes Neurales de la Computación
2.
Elife ; 112022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35861321

RESUMEN

In olfactory systems, convergence of sensory neurons onto glomeruli generates a map of odorant receptor identity. How glomerular maps relate to sensory space remains unclear. We sought to better characterize this relationship in the mouse olfactory system by defining glomeruli in terms of the odorants to which they are most sensitive. Using high-throughput odorant delivery and ultrasensitive imaging of sensory inputs, we imaged responses to 185 odorants presented at concentrations determined to activate only one or a few glomeruli across the dorsal olfactory bulb. The resulting datasets defined the tuning properties of glomeruli - and, by inference, their cognate odorant receptors - in a low-concentration regime, and yielded consensus maps of glomerular sensitivity across a wide range of chemical space. Glomeruli were extremely narrowly tuned, with ~25% responding to only one odorant, and extremely sensitive, responding to their effective odorants at sub-picomolar to nanomolar concentrations. Such narrow tuning in this concentration regime allowed for reliable functional identification of many glomeruli based on a single diagnostic odorant. At the same time, the response spectra of glomeruli responding to multiple odorants was best predicted by straightforward odorant structural features, and glomeruli sensitive to distinct odorants with common structural features were spatially clustered. These results define an underlying structure to the primary representation of sensory space by the mouse olfactory system.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Ratones , Odorantes , Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/metabolismo , Olfato/fisiología
5.
PLoS Comput Biol ; 17(6): e1008996, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061830

RESUMEN

Several homeostatic mechanisms enable the brain to maintain desired levels of neuronal activity. One of these, homeostatic structural plasticity, has been reported to restore activity in networks disrupted by peripheral lesions by altering their neuronal connectivity. While multiple lesion experiments have studied the changes in neurite morphology that underlie modifications of synapses in these networks, the underlying mechanisms that drive these changes are yet to be explained. Evidence suggests that neuronal activity modulates neurite morphology and may stimulate neurites to selective sprout or retract to restore network activity levels. We developed a new spiking network model of peripheral lesioning and accurately reproduced the characteristics of network repair after deafferentation that are reported in experiments to study the activity dependent growth regimes of neurites. To ensure that our simulations closely resemble the behaviour of networks in the brain, we model deafferentation in a biologically realistic balanced network model that exhibits low frequency Asynchronous Irregular (AI) activity as observed in cerebral cortex. Our simulation results indicate that the re-establishment of activity in neurons both within and outside the deprived region, the Lesion Projection Zone (LPZ), requires opposite activity dependent growth rules for excitatory and inhibitory post-synaptic elements. Analysis of these growth regimes indicates that they also contribute to the maintenance of activity levels in individual neurons. Furthermore, in our model, the directional formation of synapses that is observed in experiments requires that pre-synaptic excitatory and inhibitory elements also follow opposite growth rules. Lastly, we observe that our proposed structural plasticity growth rules and the inhibitory synaptic plasticity mechanism that also balances our AI network both contribute to the restoration of the network to pre-deafferentation stable activity levels.


Asunto(s)
Corteza Cerebral/patología , Modelos Neurológicos , Red Nerviosa , Potenciales de Acción/fisiología , Animales , Corteza Cerebral/fisiopatología , Simulación por Computador , Homeostasis , Plasticidad Neuronal , Neuronas/fisiología , Sinapsis/fisiología
6.
Front Neural Circuits ; 15: 610446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135736

RESUMEN

The nervous systems converts the physical quantities sensed by its primary receptors into trains of events that are then processed in the brain. The unmatched efficiency in information processing has long inspired engineers to seek brain-like approaches to sensing and signal processing. The key principle pursued in neuromorphic sensing is to shed the traditional approach of periodic sampling in favor of an event-driven scheme that mimicks sampling as it occurs in the nervous system, where events are preferably emitted upon the change of the sensed stimulus. In this paper we highlight the advantages and challenges of event-based sensing and signal processing in the visual, auditory and olfactory domains. We also provide a survey of the literature covering neuromorphic sensing and signal processing in all three modalities. Our aim is to facilitate research in event-based sensing and signal processing by providing a comprehensive overview of the research performed previously as well as highlighting conceptual advantages, current progress and future challenges in the field.


Asunto(s)
Algoritmos , Procesamiento de Señales Asistido por Computador , Olfato/fisiología , Visión Ocular/fisiología , Animales , Humanos , Modelos Neurológicos , Agudeza Visual/fisiología
7.
Biol Cybern ; 115(2): 161-176, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33787967

RESUMEN

In studies of the visual system as well as in computer vision, the focus is often on contrast edges. However, the primate visual system contains a large number of cells that are insensitive to spatial contrast and, instead, respond to uniform homogeneous illumination of their visual field. The purpose of this information remains unclear. Here, we propose a mechanism that detects feature homogeneity in visual areas, based on latency coding and spike time coincidence, in a purely feed-forward and therefore rapid manner. We demonstrate how homogeneity information can interact with information on contrast edges to potentially support rapid image segmentation. Furthermore, we analyze how neuronal crosstalk (noise) affects the mechanism's performance. We show that the detrimental effects of crosstalk can be partly mitigated through delayed feed-forward inhibition that shapes bi-phasic post-synaptic events. The delay of the feed-forward inhibition allows effectively controlling the size of the temporal integration window and, thereby, the coincidence threshold. The proposed model is based on single-spike latency codes in a purely feed-forward architecture that supports low-latency processing, making it an attractive scheme of computation in spiking neuronal networks where rapid responses and low spike counts are desired.


Asunto(s)
Neuronas , Potenciales de Acción , Animales , Estimulación Luminosa
8.
ACS Sens ; 6(3): 688-692, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33524259

RESUMEN

Electronic olfaction can help detect and localize harmful gases and pollutants, but the turbulence of the natural environment presents a particular challenge: odor encounters are intermittent, and an effective electronic nose must therefore be able to resolve short odor pulses. The slow responses of the widely used metal oxide (MOX) gas sensors complicate the task. Here, we combine high-resolution data acquisition with a processing method based on Kalman filtering and absolute-deadband sampling to extract fast onset events. We find that our system can resolve the onset time of odor encounters with enough precision for source direction estimation with a pair of MOX sensors in a stereo-osmic configuration.


Asunto(s)
Gases , Metales , Nariz Electrónica , Electrónica , Óxidos
9.
Neural Netw ; 131: 37-49, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32750603

RESUMEN

Cortical neurons are silent most of the time: sparse activity enables low-energy computation in the brain, and promises to do the same in neuromorphic hardware. Beyond power efficiency, sparse codes have favourable properties for associative learning, as they can store more information than local codes but are easier to read out than dense codes. Auto-encoders with a sparse constraint can learn sparse codes, and so can single-layer networks that combine recurrent inhibition with unsupervised Hebbian learning. But the latter usually require fast homeostatic plasticity, which could lead to catastrophic forgetting in embodied agents that learn continuously. Here we set out to explore whether plasticity at recurrent inhibitory synapses could take up that role instead, regulating both the population sparseness and the firing rates of individual neurons. We put the idea to the test in a network that employs compartmentalised inputs to solve the task: rate-based dendritic compartments integrate the feedforward input, while spiking integrate-and-fire somas compete through recurrent inhibition. A somato-dendritic learning rule allows somatic inhibition to modulate nonlinear Hebbian learning in the dendrites. Trained on MNIST digits and natural images, the network discovers independent components that form a sparse encoding of the input and support linear decoding. These findings confirm that intrinsic homeostatic plasticity is not strictly required for regulating sparseness: inhibitory synaptic plasticity can have the same effect. Our work illustrates the usefulness of compartmentalised inputs, and makes the case for moving beyond point neuron models in artificial spiking neural networks.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Plasticidad Neuronal , Aprendizaje por Asociación , Dendritas/fisiología , Retroalimentación , Humanos
10.
Sci Rep ; 10(1): 77, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919393

RESUMEN

Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.


Asunto(s)
Odorantes/análisis , Bulbo Olfatorio/patología , Receptores Odorantes/metabolismo , Animales , Mapeo Encefálico/métodos , Análisis por Conglomerados , Femenino , Aprendizaje Automático , Masculino , Ratones , Microscopía Confocal , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Receptores Odorantes/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Olfato/fisiología , Relación Estructura-Actividad
11.
Biol Cybern ; 113(4): 423-437, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30944983

RESUMEN

Brains perform complex tasks using a fraction of the power that would be required to do the same on a conventional computer. New neuromorphic hardware systems are now becoming widely available that are intended to emulate the more power efficient, highly parallel operation of brains. However, to use these systems in applications, we need "neuromorphic algorithms" that can run on them. Here we develop a spiking neural network model for neuromorphic hardware that uses spike timing-dependent plasticity and lateral inhibition to perform unsupervised clustering. With this model, time-invariant, rate-coded datasets can be mapped into a feature space with a specified resolution, i.e., number of clusters, using exclusively neuromorphic hardware. We developed and tested implementations on the SpiNNaker neuromorphic system and on GPUs using the GeNN framework. We show that our neuromorphic clustering algorithm achieves results comparable to those of conventional clustering algorithms such as self-organizing maps, neural gas or k-means clustering. We then combine it with a previously reported supervised neuromorphic classifier network to demonstrate its practical use as a neuromorphic preprocessing module.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Neuronas/fisiología , Reconocimiento de Normas Patrones Automatizadas/métodos , Aprendizaje Automático no Supervisado , Potenciales de Acción/fisiología , Análisis por Conglomerados , Humanos , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa/métodos
12.
Sci Rep ; 5: 17670, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26638830

RESUMEN

The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor's temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails.


Asunto(s)
Modelos Estadísticos , Fibras Nerviosas/metabolismo , Nociceptores/metabolismo , Temperatura , Animales , Miembro Posterior/fisiología , Funciones de Verosimilitud , Ratones , Modelos Teóricos , Neuronas/metabolismo , Piel/metabolismo
14.
Front Neurosci ; 9: 491, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26778950

RESUMEN

Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and "neuromorphic algorithms" are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for scalability, maximum throughput, and minimum latency. Moreover, our results indicate that special attention should be paid to minimize host-device communication when designing and implementing networks for efficient neuromorphic computing.

15.
Elife ; 3: e04147, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25512254

RESUMEN

To internally reflect the sensory environment, animals create neural maps encoding the external stimulus space. From that primary neural code relevant information has to be extracted for accurate navigation. We analyzed how different odor features such as hedonic valence and intensity are functionally integrated in the lateral horn (LH) of the vinegar fly, Drosophila melanogaster. We characterized an olfactory-processing pathway, comprised of inhibitory projection neurons (iPNs) that target the LH exclusively, at morphological, functional and behavioral levels. We demonstrate that iPNs are subdivided into two morphological groups encoding positive hedonic valence or intensity information and conveying these features into separate domains in the LH. Silencing iPNs severely diminished flies' attraction behavior. Moreover, functional imaging disclosed a LH region tuned to repulsive odors comprised exclusively of third-order neurons. We provide evidence for a feature-based map in the LH, and elucidate its role as the center for integrating behaviorally relevant olfactory information.


Asunto(s)
Encéfalo/fisiología , Drosophila melanogaster/fisiología , Odorantes , Animales , Señalización del Calcio , Dendritas/fisiología , Inhibición Neural/fisiología , Vías Olfatorias/fisiología , Ácido gamma-Aminobutírico/metabolismo
16.
Neuroimage ; 98: 279-88, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24769181

RESUMEN

Segmentation of functional parts in image series of functional activity is a common problem in neuroscience. Here we apply regularized non-negative matrix factorization (rNMF) to extract glomeruli in intrinsic optical signal (IOS) images of the olfactory bulb. Regularization allows us to incorporate prior knowledge about the spatio-temporal characteristics of glomerular signals. We demonstrate how to identify suitable regularization parameters on a surrogate dataset. With appropriate regularization segmentation by rNMF is more resilient to noise and requires fewer observations than conventional spatial independent component analysis (sICA). We validate our approach in experimental data using anatomical outlines of glomeruli obtained by 2-photon imaging of resting synapto-pHluorin fluorescence. Taken together, we show that rNMF provides a straightforward method for problem tailored source separation that enables reliable automatic segmentation of functional neural images, with particular benefit in situations with low signal-to-noise ratio as in IOS imaging.


Asunto(s)
Mapeo Encefálico/métodos , Odorantes , Bulbo Olfatorio/fisiología , Imagen Óptica/métodos , Olfato/fisiología , Algoritmos , Animales , Procesamiento de Imagen Asistido por Computador , Ratones
17.
Proc Natl Acad Sci U S A ; 111(6): 2081-6, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469794

RESUMEN

Computational neuroscience has uncovered a number of computational principles used by nervous systems. At the same time, neuromorphic hardware has matured to a state where fast silicon implementations of complex neural networks have become feasible. En route to future technical applications of neuromorphic computing the current challenge lies in the identification and implementation of functional brain algorithms. Taking inspiration from the olfactory system of insects, we constructed a spiking neural network for the classification of multivariate data, a common problem in signal and data analysis. In this model, real-valued multivariate data are converted into spike trains using "virtual receptors" (VRs). Their output is processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs are conveniently implemented in software, whereas the lateral inhibition and classification stages run on accelerated neuromorphic hardware. When trained and tested on real-world datasets, we find that the classification performance is on par with a naïve Bayes classifier. An analysis of the network dynamics shows that stable decisions in output neuron populations are reached within less than 100 ms of biological time, matching the time-to-decision reported for the insect nervous system. Through leveraging a population code, the network tolerates the variability of neuronal transfer functions and trial-to-trial variation that is inevitably present on the hardware system. Our work provides a proof of principle for the successful implementation of a functional spiking neural network on a configurable neuromorphic hardware system that can readily be applied to real-world computing problems.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Teorema de Bayes , Encéfalo/fisiología , Aprendizaje , Análisis Multivariante
18.
Front Neurosci ; 7: 11, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23423583

RESUMEN

In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.

19.
Mol Inform ; 32(9-10): 855-65, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27480237

RESUMEN

Responses of olfactory receptors (ORs) can be predicted by applying machine learning methods on a multivariate encoding of an odorant's chemical structure. Physicochemical descriptors that encode features of the molecular graph are a popular choice for such an encoding. Here, we explore the EVA descriptor set, which encodes features derived from the vibrational spectrum of a molecule. We assessed the performance of Support Vector Regression (SVR) and Random Forest Regression (RFR) to predict the gradual response of Drosophila ORs. We compared a 27-dimensional variant of the EVA descriptor against a set of 1467 descriptors provided by the eDragon software package, and against a 32-dimensional subset thereof that has been proposed as the basis for an odor metric consisting of 32 descriptors (HADDAD). The best prediction performance was reproducibly achieved using SVR on the highest-dimensional feature set. The low-dimensional EVA and HADDAD feature sets predicted odor-OR interactions with similar accuracy. Adding charge and polarizability information to the EVA descriptor did not improve the results but rather decreased predictive power. Post-hoc in vivo measurements confirmed these results. Our findings indicate that EVA provides a meaningful low-dimensional representation of odor space, although EVA hardly outperformed "classical" descriptor sets.

20.
Chem Senses ; 36(7): 613-21, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21486995

RESUMEN

How are odor mixtures perceived? We take a behavioral approach toward this question, using associative odor-recognition experiments in Drosophila. We test how strongly flies avoid a binary mixture after punishment training with one of its constituent elements and how much, in turn, flies avoid an odor element if it had been a component of a previously punished binary mixture. A distinguishing feature of our approach is that we first adjust odors for task-relevant behavioral potency, that is, for equal learnability. Doing so, we find that 1) generalization between mixture and elements is symmetrical and partial, 2) elements are equally similar to all mixtures containing it and that 3) mixtures are equally similar to both their constituent elements. As boundary conditions for the applicability of these rules, we note that first, although variations in learnability are small and remain below statistical cut-off, these variations nevertheless correlate with the elements' perceptual "weight" in the mixture; thus, even small differences in learnability between the elements have the potential to feign mixture asymmetries. Second, the more distant the elements of a mixture are to each other in terms of their physicochemical properties, the more distant the flies regard the elements from the mixture. Thus, titrating for task-relevant behavioral potency and taking into account physicochemical relatedness of odors reveals rules of mixture perception that, maybe surprisingly, appear to be fairly simple.


Asunto(s)
Drosophila/fisiología , Odorantes/análisis , Olfato/fisiología , Animales , Reacción de Prevención/fisiología , Conducta Animal/fisiología , Castigo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...