Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 49(11): 3787-3796, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35567626

RESUMEN

PURPOSE: FDOPA PET shows good performance for the diagnosis of striatal dopaminergic denervation, making it a valuable tool for the differential diagnosis of Parkinsonism. Textural features are image biomarkers that could potentially improve the early diagnosis and monitoring of neurodegenerative parkinsonian syndromes. We explored the performances of textural features for binary classification of FDOPA scans. METHODS: We used two FDOPA PET datasets: 443 scans for feature selection, and 100 scans from a different PET/CT system for model testing. Scans were labelled according to expert interpretation (dopaminergic denervation versus no dopaminergic denervation). We built LASSO logistic regression models using 43 biomarkers including 32 textural features. Clinical data were also collected using a shortened UPDRS scale. RESULTS: The model built from the clinical data alone had a mean area under the receiver operating characteristics (AUROC) of 63.91. Conventional imaging features reached a maximum score of 93.47 but the addition of textural features significantly improved the AUROC to 95.73 (p < 0.001), and 96.10 (p < 0.001) when limiting the model to the top three features: GLCM_Correlation, Skewness and Compacity. Testing the model on the external dataset yielded an AUROC of 96.00, with 95% sensitivity and 97% specificity. GLCM_Correlation was one of the most independent features on correlation analysis, and systematically had the heaviest weight in the classification model. CONCLUSION: A simple model with three radiomic features can identify pathologic FDOPA PET scans with excellent sensitivity and specificity. Textural features show promise for the diagnosis of parkinsonian syndromes.


Asunto(s)
Trastornos Parkinsonianos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Desnervación , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos
3.
Nat Immunol ; 22(2): 216-228, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462454

RESUMEN

CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.


Asunto(s)
Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD4-Positivos/parasitología , Colon/microbiología , Colon/parasitología , Microbioma Gastrointestinal , Heligmosomatoidea/patogenicidad , Parasitosis Intestinales/parasitología , Animales , Bacterias/inmunología , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Citrobacter rodentium/inmunología , Citrobacter rodentium/patogenicidad , Colon/inmunología , Colon/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Heligmosomatoidea/inmunología , Interacciones Huésped-Patógeno , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Parasitosis Intestinales/genética , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Nematospiroides dubius/inmunología , Nematospiroides dubius/patogenicidad , Nippostrongylus/inmunología , Nippostrongylus/patogenicidad , Fenotipo , Salmonella enterica/inmunología , Salmonella enterica/patogenicidad , Análisis de la Célula Individual , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 117(41): 25655-25666, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32978299

RESUMEN

Although we know many sequence-specific transcription factors (TFs), how the DNA sequence of cis-regulatory elements is decoded and orchestrated on the genome scale to determine immune cell differentiation is beyond our grasp. Leveraging a granular atlas of chromatin accessibility across 81 immune cell types, we asked if a convolutional neural network (CNN) could learn to infer cell type-specific chromatin accessibility solely from regulatory DNA sequences. With a tailored architecture and an ensemble approach to CNN parameter interpretation, we show that our trained network ("AI-TAC") does so by rediscovering ab initio the binding motifs for known regulators and some unknown ones. Motifs whose importance is learned virtually as functionally important overlap strikingly well with positions determined by chromatin immunoprecipitation for several TFs. AI-TAC establishes a hierarchy of TFs and their interactions that drives lineage specification and also identifies stage-specific interactions, like Pax5/Ebf1 vs. Pax5/Prdm1, or the role of different NF-κB dimers in different cell types. AI-TAC assigns Spi1/Cebp and Pax5/Ebf1 as the drivers necessary for myeloid and B lineage fates, respectively, but no factors seemed as dominantly required for T cell differentiation, which may represent a fall-back pathway. Mouse-trained AI-TAC can parse human DNA, revealing a strikingly similar ranking of influential TFs and providing additional support that AI-TAC is a generalizable regulatory sequence decoder. Thus, deep learning can reveal the regulatory syntax predictive of the full differentiative complexity of the immune system.


Asunto(s)
Aprendizaje Profundo , Hematopoyesis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción , Animales , Cromatina/genética , Bases de Datos Genéticas , Regulación de la Expresión Génica/genética , Humanos , Ratones , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA