RESUMEN
Thiamine-responsive megaloblastic anemia syndrome (TRMA) is a rare autosomal recessive disease with a homozygous or compound-heterozygous mutation in the SLC19A2 gene characterized by megaloblastic anemia, diabetes mellitus (DM), and sensorineural hearing-loss with onset in childhood. Folic acid and vitamin B12 in serum are normal with dysplastic erythropoiesis in the bone marrow often mimicking myelodysplastic neoplasms (MDN) as a potential differential diagnosis. Thiamine substitution leads to normalization of anemia, without effects on hearing-loss or DM. We report about a 38-year-old male patient, presented with a 12-year history of anemia, insulin dependent DM, optic neuropathy and a cataract since early childhood. The laboratory showed megaloblastic anemia. Other values were normal. The bone marrow smear showed dysplastic erythropoiesis with megaloblastic changes, and normal findings in cytogenetic and molecular genetic examinations. Next-generation sequencing based diagnostics revealed a heterozygous missense variant in the SLC19A2 gene on the maternal allele and a 3.4 Mb inversion in the chromosomal region 1q24.2 with breaking points in FAM78B and SLC19A2 on the paternal allele. Treatment with oral thiamine 100 mg daily was initiated, and 12 weeks later Hb levels and bone marrow morphology had normalized. Late-onset TRMA should be considered in adult patients with indicative comorbidities and a typical phenotype, which may mimic features of MDS.
RESUMEN
PURPOSE: KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS. METHODS: We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data. RESULTS: The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptoms included mild/borderline intellectual disability (n = 22); gross and/or fine motor difficulties (n = 15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n = 26); nonverbal (n = 3), seizures with various seizure types and treatment responses (n = 10); ophthalmological comorbidities (n = 20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n = 2) and autoimmune conditions (n = 4). Education, work, and residence varied, and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both data sets. CONCLUSION: Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.
Asunto(s)
Discapacidad Intelectual , Fenotipo , Humanos , Adulto , Discapacidad Intelectual/genética , Discapacidad Intelectual/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Adulto Joven , Haploinsuficiencia/genética , Convulsiones/genética , Convulsiones/epidemiología , Médicos , Adolescente , Facies , Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Anomalías DentariasRESUMEN
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.
Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Animales , Niño , Humanos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidad Intelectual/genética , Mamíferos , Anomalías Musculoesqueléticas/genética , Mutación Missense , Factores de Transcripción/genética , DrosophilaRESUMEN
Dysmorphologists sometimes encounter challenges in recognizing disorders due to phenotypic variability influenced by factors such as age and ethnicity. Moreover, the performance of Next Generation Phenotyping Tools such as GestaltMatcher is dependent on the diversity of the training set. Therefore, we developed GestaltMatcher Database (GMDB) - a global reference for the phenotypic variability of rare diseases that complies with the FAIR-principles. We curated dysmorphic patient images and metadata from 2,224 publications, transforming GMDB into an online dynamic case report journal. To encourage clinicians worldwide to contribute, each case can receive a Digital Object Identifier (DOI), making it a citable micro-publication. This resulted in a collection of 2,312 unpublished images, partly with longitudinal data. We have compiled a collection of 10,189 frontal images from 7,695 patients representing 683 disorders. The web interface enables gene- and phenotype-centered queries for registered users (https://db.gestaltmatcher.org/). Despite the predominant European ancestry of most patients (59%), our global collaborations have facilitated the inclusion of data from frequently underrepresented ethnicities, with 17% Asian, 4% African, and 6% with other ethnic backgrounds. The analysis has revealed a significant enhancement in GestaltMatcher performance across all ethnic groups, incorporating non-European ethnicities, showcasing a remarkable increase in Top-1-Accuracy by 31.56% and Top-5-Accuracy by 12.64%. Importantly, this improvement was achieved without altering the performance metrics for European patients. GMDB addresses dysmorphology challenges by representing phenotypic variability and including underrepresented groups, enhancing global diagnostic rates and serving as a vital clinician reference database.
RESUMEN
Arthrogryposis multiplex congenita forms a broad group of clinically and etiologically heterogeneous disorders characterized by congenital joint contractures that involve at least two different parts of the body. Neurological and muscular disorders are commonly underlying arthrogryposis. Here, we report five affected individuals from three independent families sharing an overlapping phenotype with congenital contractures affecting shoulder, elbow, hand, hip, knee and foot as well as scoliosis, reduced palmar and plantar skin folds, microcephaly and facial dysmorphism. Using exome sequencing, we identified homozygous truncating variants in FILIP1 in all patients. FILIP1 is a regulator of filamin homeostasis required for the initiation of cortical cell migration in the developing neocortex and essential for the differentiation process of cross-striated muscle cells during myogenesis. In summary, our data indicate that bi-allelic truncating variants in FILIP1 are causative of a novel autosomal recessive disorder and expand the spectrum of genetic factors causative of arthrogryposis multiplex congenita.
Asunto(s)
Artrogriposis , Contractura , Microcefalia , Humanos , Artrogriposis/genética , Microcefalia/genética , Homocigoto , Fenotipo , Linaje , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genéticaRESUMEN
Progeroid disorders make up a heterogeneous group of very rare hereditary diseases characterized by clinical signs that often mimic physiological aging in a premature manner. Apart from Hutchinson-Gilford progeria syndrome, one of the best-investigated progeroid disorders, a wide spectrum of other premature aging phenotypes exist, which differ significantly in their clinical presentation and molecular pathogenesis. Next-generation sequencing (NGS)-based approaches have made it feasible to determine the molecular diagnosis in the early stages of a disease. Nevertheless, a broad clinical knowledge on these disorders and their associated symptoms is still fundamental for a comprehensive patient management and for the interpretation of variants of unknown significance from NGS data sets. This review provides a detailed overview on characteristic clinical features and underlying molecular genetics of well-known as well as only recently identified premature aging disorders and also highlights novel findings towards future therapeutic options.
Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/genética , Progeria/genética , Envejecimiento/patología , Envejecimiento Prematuro/diagnóstico , Envejecimiento Prematuro/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Patología Molecular , Fenotipo , Progeria/diagnóstico , Progeria/fisiopatologíaRESUMEN
Cell division cycle 42 (CDC42) is a small Rho GTPase, which serves as a fundamental intracellular signal node regulating actin cytoskeletal dynamics and several other integral cellular processes. CDC42-associated disorders encompass a broad clinical spectrum including Takenouchi-Kosaki syndrome, autoinflammatory syndromes and neurodevelopmental phenotypes mimicking RASopathies. Dysregulation of CDC42 signaling by genetic defects in either DOCK6 or ARHGAP31 is also considered to play a role in the pathogenesis of Adams-Oliver syndrome (AOS). Here, we report a mother and her child carrying the previously reported pathogenic CDC42 variant c.511G>A (p.Glu171Lys). Both affected individuals presented with short stature, distinctive craniofacial features, pectus deformity as well as heart and eye anomalies, similar to the recently described Noonan syndrome-like phenotype associated with this variant. Remarkably, one of the patients additionally exhibited aplasia cutis congenita of the scalp. Multi-gene panel sequencing of the known AOS-causative genes and whole exome sequencing revealed no second pathogenic variant in any disease-associated gene explaining the aplasia cutis phenotype in our patient. This observation further expands the phenotypic spectrum of CDC42-associated disorders and underscores the role of CDC42 dysregulation in the pathogenesis of aplasia cutis congenita.
Asunto(s)
Anomalías Múltiples/genética , Displasia Ectodérmica/genética , Mutación Missense , Mutación Puntual , Enfermedades Cutáneas Vasculares/genética , Telangiectasia/congénito , Proteína de Unión al GTP cdc42/deficiencia , Adulto , Sustitución de Aminoácidos , Anomalías Craneofaciales/genética , Enanismo/genética , Anomalías del Ojo/genética , Femenino , Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Humanos , Recién Nacido , Livedo Reticularis , Linaje , Fenotipo , Cuero Cabelludo/patología , Telangiectasia/genética , Proteína de Unión al GTP cdc42/genéticaRESUMEN
BACKGROUND: Down syndrome, typically caused by trisomy 21, may also be associated by duplications of the Down syndrome critical region (DSCR) on chromosome 21q22. However, patients with small duplications of DSCR without accompanying deletions have rarely been reported. CASE PRESENTATION: Here we report a 5½-year-old boy with clinical features of Down syndrome including distinct craniofacial dysmorphism and sandal gaps as well as developmental delay. Conventional karyotype was normal, whereas interphase FISH analysis revealed three signals for DSCR in approximately 40% of lymphocytes and 80% of buccal mucosa cells. Array-CGH analysis confirmed a 2.56 Mb duplication of chromosome 21q22.13q22.2 encompassing DYRK1A. CONCLUSION: This presents one of the smallest duplications within DSCR leading to a Down syndrome phenotype. Since the dosage sensitive gene DYRK1A is the only duplicated candidate DSCR gene in our patient, this finding supports the hypothesis that DYRK1A contributes to dysmorphic and intellectual features of Down syndrome even in a mosaic state.