Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 94(36): 12292-12296, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36048752

RESUMEN

A key element of successful lipidomics analysis is a sufficient extraction of lipid molecules typically by two-phase systems such as chloroform-based Bligh and Dyer (B&D). However, numerous metabolomics and lipidomics studies today apply easy to use one-phase extractions. In this work, quantitative flow injection analysis high-resolution mass spectrometry was applied to benchmark the lipid recovery of popular one-phase extraction methods for human plasma samples. The following organic solvents were investigated: methanol (MeOH), ethanol (EtOH), 2-propanol (IPA), 1-butanol (BuOH), acetonitrile (ACN) and the solvent mixtures BuOH/MeOH (3:1) and MeOH/ACN (1:1). The recovery of polar lysophospholipids was sufficient for all tested solvents. However, nonpolar lipid classes such as triglycerides (TG) and cholesteryl esters (CE) revealed extraction efficiencies less than 5% due to precipitation in polar solvents EtOH, MeOH, MeOH/ACN, and ACN. Sample pellets also contained a substantial amount of phospholipids, for example, more than 75% of total phosphatidylcholine and sphingomyelin for ACN. The loss of lipids by precipitation was directly related to the polarity of solvents and lipid classes. Although, lipid recovery increased with the volume of organic solvent, recovery in polar MeOH remains incomplete also for less polar lipid classes such as ceramides. Addition of stable isotope-labeled internal standards prior to lipid extraction could compensate for insufficient lipid recovery for polar lipid classes including lysolipids and phospholipids but not for nonpolar CE and TG. In summary, application of one-phase extractions should be limited to polar lipid classes unless sufficient recovery/solubility of nonpolar lipids has been demonstrated. The presented data reveal that appropriate lipid extraction efficiency is fundamental to achieve accurate lipid quantification.


Asunto(s)
Benchmarking , Lipidómica , Humanos , Espectrometría de Masas/métodos , Metanol/química , Fosfolípidos , Solventes/química , Triglicéridos
2.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562962

RESUMEN

Mitochondria play a crucial role in cell physiology and pathophysiology. In this context, mitochondrial dynamics and, subsequently, mitochondrial ultrastructure have increasingly become hot topics in modern research, with a focus on mitochondrial fission and fusion. Thus, the dynamics of mitochondria in several diseases have been intensively investigated, especially with a view to developing new promising treatment options. However, the majority of recent studies are performed in highly energy-dependent tissues, such as cardiac, hepatic, and neuronal tissues. In contrast, publications on mitochondrial dynamics from the orthopedic or trauma fields are quite rare, even if there are common cellular mechanisms in cardiovascular and bone tissue, especially regarding bone infection. The present report summarizes the spectrum of mitochondrial alterations in the cardiovascular system and compares it to the state of knowledge in the musculoskeletal system. The present paper summarizes recent knowledge regarding mitochondrial dynamics and gives a short, but not exhaustive, overview of its regulation via fission and fusion. Furthermore, the article highlights hypoxia and its accompanying increased mitochondrial fission as a possible link between cardiac ischemia and inflammatory diseases of the bone, such as osteomyelitis. This opens new innovative perspectives not only for the understanding of cellular pathomechanisms in osteomyelitis but also for potential new treatment options.


Asunto(s)
Dinámicas Mitocondriales , Osteomielitis , Humanos , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Osteoblastos/metabolismo , Osteomielitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...