Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205939

RESUMEN

Asymmetric cell divisions often generate daughter cells of unequal size in addition to different fates. In some contexts, daughter cell size asymmetry is thought to be a key input to specific binary cell fate decisions. An alternative possibility is that unequal division is a mechanism by which a variety of cells of different sizes are generated during embryonic development. We show here that two unequal cell divisions precede neuroblast formation in the C lineage of Caenorhabditis elegans. The equalisation of these divisions in a pig-1/MELK mutant background has little effect on neuroblast specification. Instead, we demonstrate that let-19/MDT13 is a regulator of the proneural basic helix-loop-helix transcription factor hlh-14/ASCL1 and find that both are required to concomitantly regulate the acquisition of neuroblast identity and neuroblast cell size. Thus, embryonic neuroblast cell size in this lineage is progressively regulated in parallel with identity by key neural cell fate regulators. We propose that key cell fate determinants have a previously unappreciated function in regulating unequal cleavage, and therefore cell size, of the progenitor cells whose daughter cell fates they then go on to specify.


Asunto(s)
Proteínas de Caenorhabditis elegans , Células-Madre Neurales , Animales , Proteínas de Caenorhabditis elegans/genética , Neuronas , Caenorhabditis elegans , División Celular , Tamaño de la Célula
2.
Mol Cell Proteomics ; 22(3): 100505, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36717059

RESUMEN

Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-ß-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following ß-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.


Asunto(s)
Caenorhabditis , Animales , Caenorhabditis/metabolismo , Fucosa/metabolismo , Proteómica , Cromatografía Líquida de Alta Presión , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Caenorhabditis elegans/metabolismo , Polisacáridos/metabolismo , Glicómica
3.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36595352

RESUMEN

Are there common mechanisms of neurogenesis used throughout an entire nervous system? We explored to what extent canonical proneural class I/II bHLH complexes are responsible for neurogenesis throughout the entire Caenorhabditis elegans nervous system. Distinct, lineage-specific proneural class II bHLH factors are generally thought to operate via interaction with a common, class I bHLH subunit, encoded by Daughterless in flies, the E proteins in vertebrates and HLH-2 in C. elegans. To eliminate function of all proneuronal class I/II bHLH complexes, we therefore genetically removed maternal and zygotic hlh-2 gene activity. We observed broad effects on neurogenesis, but still detected normal neurogenesis in many distinct neuron-producing lineages of the central and peripheral nervous system. Moreover, we found that hlh-2 selectively affects some aspects of neuron differentiation while leaving others unaffected. Although our studies confirm the function of proneuronal class I/II bHLH complexes in many different lineages throughout a nervous system, we conclude that their function is not universal, but rather restricted by lineage, cell type and components of differentiation programs affected.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Neurogénesis/genética , Regulación del Desarrollo de la Expresión Génica
4.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34550348

RESUMEN

It has been estimated that 15%-30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with apparent sperm-specific functions. In total, 58 putative essential genes were identified on chromosomes III-V, of which 52 genes are represented by novel alleles in this collection. Of these 52 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalog of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in C. elegans are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes Esenciales , Humanos , Masculino , Mutación , Fenotipo , Secuenciación Completa del Genoma
5.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34100067

RESUMEN

Cells of the same type can be generated by distinct cellular lineages that originate in different parts of the developing embryo ('lineage convergence'). Several Caenorhabditis elegans neuron classes composed of left/right or radially symmetric class members display such lineage convergence. We show here that the C. elegans Atonal homolog lin-32 is differentially expressed in neuronal lineages that give rise to left/right or radially symmetric class members. Loss of lin-32 results in the selective loss of the expression of pan-neuronal markers and terminal selector-type transcription factors that confer neuron class-specific features. Another basic helix-loop-helix (bHLH) gene, the Achaete-Scute homolog hlh-14, is expressed in a mirror image pattern relative to lin-32 and is required to induce neuronal identity and terminal selector expression on the contralateral side of the animal. These findings demonstrate that distinct lineage histories converge via different bHLH factors at the level of induction of terminal selector identity determinants, which thus serve as integrators of distinct lineage histories. We also describe neuron-to-neuron identity transformations in lin-32 mutants, which we propose to also be the result of misregulation of terminal selector gene expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Linaje de la Célula/fisiología , Neuronas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción
6.
PLoS Genet ; 15(9): e1008338, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525188

RESUMEN

Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.


Asunto(s)
Especificidad de Órganos/genética , Transporte de ARN/fisiología , ARN Mensajero/fisiología , Transporte Activo de Núcleo Celular/genética , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Transporte de ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
7.
Curr Biol ; 29(8): 1324-1336.e6, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30982652

RESUMEN

Centrosomes, the major microtubule-organizing centers of animal cells, are essential for the assembly of a bipolar spindle during mitosis. Spindle defective-5 (SPD-5), the main scaffold protein of the centrosome matrix in Caenorhabditis elegans, forms a thin core around non-mitotic centrioles. Upon mitotic entry, the SPD-5-containing centrosome matrix expands in a Polo-like-kinase 1 (PLK-1)-dependent manner and this enables an enhanced microtubule nucleation activity during mitosis. How the non-mitotic centrosome core is formed and how this core facilitates robust SPD-5 expansion at mitotic entry remains unknown. Here, we present evidence that the coiled-coil protein pericentriolar matrix deficient-1 (PCMD-1) is necessary for the efficient loading of SPD-5, SPD-2, and PLK-1 to the non-mitotic centrosome core. Furthermore, we demonstrate that the absence of PCMD-1 disrupts pericentriolar material (PCM) recruitment and integrity. The expansion of centrosomes into spherical structures at the mitotic entry is compromised. We propose that PCMD-1 acts as a molecular platform for mitotic regulators and for components of the PCM, thereby allowing functional interactions between them, which in turn is necessary for the organization of the mitotic centrosome and, hence, spindle bipolarity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/genética , Centrosoma/fisiología , Mitosis , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología
8.
Nat Commun ; 10(1): 1901, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015409

RESUMEN

Asymmetric cell division is a major mechanism generating cell diversity. As cell cycle duration varies among cells in mammalian tissue culture cells, we asked whether their division asymmetry contributes to this variability. We identify among sibling cells an outlier using hierarchical clustering on cell cycle durations of granddaughter cells obtained by lineage tracking of single histone2B-labelled MDCKs. Remarkably, divisions involving outlier cells are not uniformly distributed in lineages, as shown by permutation tests, but appear to emerge from asymmetric divisions taking place at non-stochastic levels: a parent cell influences with 95% confidence and 0.5% error the unequal partitioning of the cell cycle duration in its two progenies. Upon ninein downregulation, this variability propagation is lost, and outlier frequency and variability in cell cycle durations in lineages is reduced. As external influences are not detectable, we propose that a cell-autonomous process, possibly involved in cell specialisation, determines cell cycle duration variability.


Asunto(s)
División Celular Asimétrica , Linaje de la Célula/genética , Proteínas del Citoesqueleto/genética , Escherichia coli/citología , Histonas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Rastreo Celular/métodos , Proteínas del Citoesqueleto/metabolismo , Perros , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Histonas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Células de Riñón Canino Madin Darby , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
9.
PLoS Genet ; 15(2): e1007981, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30807579

RESUMEN

Gene expression is generally regulated by recruitment of transcription factors and RNA polymerase II (RNAP II) to specific sequences in the gene promoter region. The Integrator complex mediates processing of small nuclear RNAs (snRNAs) as well as the initiation and release of paused RNAP II at specific genes in response to growth factors. Here we show that in C. elegans, disruption of the Integrator complex leads to transcription of genes located downstream of the snRNA loci via a non-conventional transcription mechanism based on the lack of processing of the snRNAs. RNAP II read-through generates long chimeric RNAs containing snRNA, the intergenic region and the mature mRNA of the downstream gene located in sense. These chimeric sn-mRNAs remain as untranslated long non-coding RNAs, in the case of U1- and U2-derived sn-mRNAs, but can be translated to proteins in the case of SL-derived sn-mRNAs. The transcriptional effect caused by disruption of the Integrator complex is not restricted to genes located downstream of the snRNA loci but also affects key regulators of signal transduction such as kinases and phosphatases. Our findings highlight that these transcriptional alterations may be behind the correlation between mutations in the Integrator complex and tumor transformation.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Genes de Helminto , Mutación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
10.
Dev Biol ; 447(2): 182-199, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30590018

RESUMEN

The four Caenorhabditis species C. elegans, C. briggsae, C. remanei and C. brenneri show more divergence at the genomic level than humans compared to mice (Stein et al., 2003; Cutter et al., 2006, 2008). However, the behavior and anatomy of these nematodes are very similar. We present a detailed analysis of the embryonic development of these species using 4D-microscopic analyses of embryos including lineage analysis, terminal differentiation patterns and bioinformatical quantifications of cell behavior. Further functional experiments support the notion that the early development of all four species depends on identical induction patterns. Based on our results, the embryonic development of all four Caenorhabditis species are nearly identical, suggesting that an apparently optimal program to construct the body plan of nematodes has been conserved for at least 20 million years. This contrasts the levels of divergence between the genomes and the protein orthologs of the Caenorhabditis species, which is comparable to the level of divergence between mouse and human. This indicates an intricate relationship between the structure of genomes and the morphology of animals.


Asunto(s)
Caenorhabditis , Desarrollo Embrionario/fisiología , Evolución Molecular , Genoma de los Helmintos , Filogenia , Animales , Caenorhabditis/embriología , Caenorhabditis/genética , Humanos , Ratones , Especificidad de la Especie
11.
Commun Integr Biol ; 11(3): 1-7, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214676

RESUMEN

Various neurotransmitters influence neuronal migration in the developing zebrafish hindbrain. Migrating tegmental hindbrain nuclei neurons (THNs) are governed by depolarizing neurotransmitters (acetylcholine and glutamate), and glycine. In mature neurons, glycine binds to its receptor to hyperpolarize cells. This effect depends on the co-expression of the solute carrier KCC2. Immature precursors, however, typically express NKCC1 instead of KCC2, leading to membrane depolarization upon glycine receptor activation. As neuronal migration occurs in neurons after leaving the cell cycle and before terminal differentiation, we hypothesized that the switch from NKCC1 to KCC2 expression could alter the effect of glycine on THN migration. We tested this notion using in vivo cell tracking, overexpression of glycine receptor mutations and whole mount in situ hybridization. We summarize our findings in a speculative model, combining developmental age, glycine receptor strength and solute carrier expression to describe the effect of glycine on the migration of THNs.

12.
PLoS Biol ; 16(1): e2002226, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300740

RESUMEN

Neuronal migration during embryonic development contributes to functional brain circuitry. Many neurons migrate in morphologically distinct stages that coincide with differentiation, requiring tight spatial regulation. It had been proposed that neurotransmitter-mediated activity could exert this control. Here, we demonstrate that intracellular calcium transients occur in cerebellar neurons of zebrafish embryos during migration. We show that depolarization increases and hyperpolarization reduces the speed of tegmental hindbrain neurons using optogenetic tools and advanced track analysis optimized for in vivo migration. Finally, we introduce a compound screening assay to identify acetylcholine (ACh), glutamate, and glycine as regulators of migration, which act regionally along the neurons' route. We summarize our findings in a model describing how different neurotransmitters spatially interact to control neuronal migration. The high evolutionary conservation of the cerebellum and hindbrain makes it likely that polarization state-driven motility constitutes an important principle in building a functional brain.


Asunto(s)
Movimiento Celular/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Acetilcolina/metabolismo , Animales , Encéfalo , Mapeo Encefálico , Calcio/metabolismo , Señalización del Calcio/fisiología , Diferenciación Celular/fisiología , Cerebelo/fisiología , Desarrollo Embrionario/fisiología , Ácido Glutámico/metabolismo , Glicina/metabolismo , Neurotransmisores/metabolismo , Optogenética/métodos , Pez Cebra/embriología
13.
Genetics ; 207(2): 447-463, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28827289

RESUMEN

Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2 We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.


Asunto(s)
Caenorhabditis elegans/genética , Mapeo Cromosómico/métodos , Cromosomas/genética , Mutación , Termotolerancia/genética , Secuenciación Completa del Genoma/métodos , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Mapeo Cromosómico/normas , Secuenciación Completa del Genoma/normas
15.
Elife ; 52016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27855782

RESUMEN

Neuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates C. elegans motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID. RID bears the anatomic hallmarks of a specialized endocrine neuron: it harbors near-exclusive dense core vesicles that cluster periodically along the axon, and expresses multiple neuropeptides, including the FMRF-amide-related FLP-14. RID activity increases during forward movement. Ablating RID reduces the sustainability of forward movement, a phenotype partially recapitulated by removing FLP-14. Optogenetic depolarization of RID prolongs forward movement, an effect reduced in the absence of FLP-14. Together, these results establish the role of a neuroendocrine cell RID in sustaining a specific behavioral state in C. elegans.


Asunto(s)
Caenorhabditis elegans/fisiología , Vías Nerviosas/efectos de los fármacos , Neuronas/fisiología , Neuropéptidos/metabolismo , Sistemas Neurosecretores/fisiología , Neurotransmisores/metabolismo , Animales , Conducta Animal , Locomoción , Neuronas/metabolismo
16.
Handb Exp Pharmacol ; 234: 249-274, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832491

RESUMEN

In multicellular organisms cells spatially arrange in a highly coordinated manner to form tissues and organs, which is essential for the function of an organism. The component cells and resulting structures are often polarised in one or more axes, and how such polarity is established and maintained correctly has been one of the major biological questions for many decades. Research progress has shown that many adhesion GPCRs (aGPCRs) are involved in several types of polarity. Members of the two evolutionarily oldest groups, Flamingo/Celsr and Latrophilins, are key molecules in planar cell polarity of epithelia or the propagation of cellular polarity in the early embryo, respectively. Other adhesion GPCRs play essential roles in cell migration, indicating that this receptor class includes essential molecules for the control of various levels of cellular organisation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Adhesión Celular , Membrana Celular/metabolismo , Movimiento Celular , Polaridad Celular , Células Epiteliales/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Sitios de Unión , Cadherinas/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ligandos , Modelos Moleculares , Morfogénesis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/metabolismo , Transducción de Señal , Relación Estructura-Actividad
17.
Genetics ; 202(3): 1071-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26773047

RESUMEN

Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)-treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L-like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease-causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Catepsina L/metabolismo , Metabolismo de los Lípidos/genética , Esfingomielina Fosfodiesterasa/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Catepsina L/genética , Desarrollo Embrionario , Mutación , Interferencia de ARN , Esfingomielina Fosfodiesterasa/genética , Proteínas de Transporte Vesicular/genética
18.
PLoS Genet ; 11(10): e1005624, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26505631

RESUMEN

Orientation of spindles and cell division planes during development of many species ensures that correct cell-cell contacts are established, which is vital for proper tissue formation. This is a tightly regulated process involving a complex interplay of various signals. The molecular mechanisms underlying several of these pathways are still incompletely understood. Here, we identify the signaling cascade of the C. elegans latrophilin homolog LAT-1, an essential player in the coordination of anterior-posterior spindle orientation during the fourth round of embryonic cell division. We show that the receptor mediates a G protein-signaling pathway revealing that G-protein signaling in oriented cell division is not solely GPCR-independent. Genetic analyses showed that through the interaction with a Gs protein LAT-1 elevates intracellular cyclic AMP (cAMP) levels in the C. elegans embryo. Stimulation of this G-protein cascade in lat-1 null mutant nematodes is sufficient to orient spindles and cell division planes in the embryo in the correct direction. Finally, we demonstrate that LAT-1 is activated by an intramolecular agonist to trigger this cascade. Our data support a model in which a novel, GPCR-dependent G protein-signaling cascade mediated by LAT-1 controls alignment of cell division planes in an anterior-posterior direction via a metabotropic Gs-protein/adenylyl cyclase pathway by regulating intracellular cAMP levels.


Asunto(s)
Caenorhabditis elegans/genética , División Celular/genética , Proteínas de Unión al GTP/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Adhesión Celular/genética , AMP Cíclico/genética , Embrión no Mamífero , Proteínas de Unión al GTP/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transducción de Señal
19.
Genes Nutr ; 9(2): 386, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24510589

RESUMEN

Cytosolic lipid droplets are versatile, evolutionarily conserved organelles that are important for the storage and utilization of lipids in almost all cell types. To obtain insight into the physiological importance of lipid droplet size, we isolated and characterized a new S-adenosyl methionine synthetase 1 (SAMS-1)-deficient Caenorhabditis elegans mutant, which have enlarged lipid droplets throughout its life cycle. We found that the sams-1 mutant showed a markedly reduced body size and progeny number; impaired synthesis of phosphatidylcholine, a major membrane phospholipid; and elevated expression of key lipogenic genes, such as dgat-2, resulting in the accumulation of triacylglyceride in fewer, but larger, lipid droplets. The sams-1 mutant store more than 50 % (wild type: 10 %) of its intestinal fat in large lipid droplets, ≥10 µm(3) in size. In response to starvation, SAMS-1 deficiency causes reduced depletion of a subset of lipid droplets located in the anterior intestine. Given the importance of liberation of fatty acids from lipid droplets, we propose that the physiological function of SAMS-1, a highly conserved enzyme involved in one-carbon metabolism, is the limitation of fat storage to ensure proper growth and reproduction.

20.
Cell Rep ; 2(2): 321-31, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22938866

RESUMEN

Adhesion class G protein-coupled receptors (aGPCR) form the second largest group of seven-transmembrane-spanning (7TM) receptors whose molecular layout and function differ from canonical 7TM receptors. Despite their essential roles in immunity, tumorigenesis, and development, the mechanisms of aGPCR activation and signal transduction have remained obscure to date. Here, we use a transgenic assay to define the protein domains required in vivo for the activity of the prototypical aGPCR LAT-1/Latrophilin in Caenorhabditis elegans. We show that the GPCR proteolytic site (GPS) motif, the molecular hallmark feature of the entire aGPCR class, is essential for LAT-1 signaling serving in two different activity modes of the receptor. Surprisingly, neither mode requires cleavage but presence of the GPS, which relays interactions with at least two different partners. Our work thus uncovers the versatile nature of aGPCR activity in molecular detail and places the GPS motif in a central position for diverse protein-protein interactions.


Asunto(s)
Caenorhabditis elegans/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Transducción de Señal/fisiología , Secuencias de Aminoácidos/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...