Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(6): 1399-1413, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36728132

RESUMEN

Electron transfer reactions can be strongly influenced by solvent dynamics. We study the photoionization of halides in water as a model system for such reactions. There are no internal nuclear degrees of freedom in the solute, allowing the dynamics of the solvent to be uniquely identified. We simulate the equilibrium solvent dynamics for Cl-, Br-, I-, and their respective neutral atoms in water, comparing quantum mechanical/molecular mechanical (QM/MM) and classical molecular dynamics (MD) methods. On the basis of the obtained configurations, we calculate the extended X-ray absorption fine structure (EXAFS) spectra rigorously based on the MD snapshots and compare them in detail with other theoretical and experimental results available in the literature. We find our EXAFS spectra based on QM/MM MD simulations in good agreement with their experimental counterparts for the ions. Classical MD simulations for the ions lead to EXAFS spectra that agree equally well with the experiment when it comes to the oscillatory period of the signal, even though they differ from the QM/MM radial distribution functions extracted from the MD. The amplitude is, however, considerably overestimated. This suggests that to judge the reliability of theoretical simulation methods or to elucidate fine details of the atomistic dynamics of the solvent based on EXAFS spectra, the amplitude as well as the oscillatory period need to be considered. If simulations fail qualitatively, as does the classical MD for the aqueous neutral halogen atoms, the resulting EXAFS will also be strongly affected in both oscillatory period and amplitude. The good reliability of QM/MM-based EXAFS simulations, together with clear qualitative differences in the EXAFS spectra found between halides and their atomic counterparts, suggests that a combined theory and experimental EXAFS approach is suitable for elucidating the nonequilibrium solvent dynamics in the photoionization of halides and possibly also for electron transfer reactions in more complex systems.

2.
J Chem Phys ; 154(14): 144108, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33858153

RESUMEN

Hybridization functions are an established tool for investigating the coupling between a correlated subsystem (often a single transition metal atom) and its uncorrelated environment (the substrate and any ligands present). The hybridization function can provide valuable insight into why and how strong correlation features such as the Kondo effect can be chemically controlled in certain molecular adsorbates. To deepen this insight, we introduce a local decomposition of the hybridization function, based on a truncated cluster approach, enabling us to study individual effects on this function coming from specific parts of the systems (e.g., the surface, ligands, or parts of larger ligands). It is shown that a truncated-cluster approach can reproduce the Co 3d and Mn 3d hybridization functions from periodic boundary conditions in Co(CO)4/Cu(001) and MnPc/Ag(001) qualitatively well. By locally decomposing the hybridization functions, it is demonstrated at which energies the transition metal atoms are mainly hybridized with the substrate or with the ligand. For the Kondo-active 3dx2-y2 orbital in Co(CO)4/Cu(001), the hybridization function at the Fermi energy is substrate-dominated, so we can assign its enhancement compared with ligand-free Co to an indirect effect of ligand-substrate interactions. In MnPc/Ag(001), the same is true for the Kondo-active orbital, but for two other orbitals, there are both direct and indirect effects of the ligand, together resulting in such strong screening that their potential Kondo activity is suppressed. A local decomposition of hybridization functions could also be useful in other areas, such as analyzing the electrode self-energies in molecular junctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...