Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(6): 5233-5246, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37127810

RESUMEN

BACKGROUND: Poultry production is vulnerable to increasing temperatures in terms of animal welfare and in economic losses. With the predicted increase in global temperature and the number and severity of heat waves, it is important to understand how chickens raised for food respond to heat stress. This knowledge can be used to determine how to select chickens that are adapted to thermal challenge. As neuroendocrine organs, the hypothalamus and pituitary provide systemic regulation of the heat stress response. METHODS AND RESULTS: Here we report a transcriptome analysis of the pituitary response to acute heat stress. Chickens were stressed for 2 h at 35 °C (HS) and transcriptomes compared with birds maintained in thermoneutral temperatures (25 °C). CONCLUSIONS: The observations were evaluated in the context of ontology terms and pathways to describe the pituitary response to heat stress. The pituitaries of heat stressed birds exhibited responses to hyperthermia through altered expression of genes coding for chaperones, cell cycle regulators, cholesterol synthesis, transcription factors, along with the secreted peptide hormones, prolactin, and proopiomelanocortin.


Asunto(s)
Pollos , Transcriptoma , Animales , Transcriptoma/genética , Pollos/metabolismo , Biodiversidad , Temperatura , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/genética , Calor
2.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37084379

RESUMEN

Retrotransposons are a class of transposable elements capable of self-replication and insertion into new genomic locations. Across species, the mobilization of retrotransposons in somatic cells has been suggested to contribute to the cell and tissue functional decline that occurs during aging. Retrotransposons are broadly expressed across cell types, and de novo insertions have been observed to correlate with tumorigenesis. However, the extent to which new retrotransposon insertions occur during normal aging and their effect on cellular and animal function remains understudied. Here, we use a single nucleus whole genome sequencing approach in Drosophila to directly test whether transposon insertions increase with age in somatic cells. Analyses of nuclei from thoraces and indirect flight muscles using a newly developed pipeline, Retrofind, revealed no significant increase in the number of transposon insertions with age. Despite this, reducing the expression of two different retrotransposons, 412 and Roo, extended lifespan, but did not alter indicators of health such as stress resistance. This suggests a key role for transposon expression and not insertion in regulating longevity. Transcriptomic analyses revealed similar changes to gene expression in 412 and Roo knockdown flies and highlighted changes to genes involved in proteolysis and immune function as potential contributors to the observed changes in longevity. Combined, our data show a clear link between retrotransposon expression and aging.


Asunto(s)
Drosophila , Retroelementos , Animales , Retroelementos/genética , Drosophila/genética , Drosophila melanogaster/genética , Envejecimiento/genética , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...