Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Monoclon Antib Immunodiagn Immunother ; 39(6): 228-232, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33121367

RESUMEN

Immunoglobulin A (IgA) antibodies are critical to mucosal protection, specifically dimeric IgA (dIgA) and secretory IgA (sIgA), which rely on the J chain to polymerize. There is an absence of monoclonal antibodies that can specifically bind to polymeric IgA without the need to denature the molecule. We generated a panel of highly specific mouse anti-J chain antibodies that react with both intact and denatured nonhuman primate dIgA and human dIgA and sIgA of both the IgA1 and IgA2 subclass. We expanded use of this antibody for quantification of dIgA and sIgA using biolayer interferometry or enzyme-linked immunosorbent assay and use for affinity chromatography. This is a significant improvement over available anti-IgA antibodies in the field, which will allow for expanded use in clinical testing.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos/inmunología , Inmunoglobulina A Secretora/inmunología , Inmunoglobulina A/inmunología , Animales , Cromatografía de Afinidad , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Multimerización de Proteína/inmunología
2.
Vaccine ; 38(47): 7490-7497, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33041102

RESUMEN

Mucosal surfaces of the gastrointestinal tract play an important role in immune homeostasis and defense and may be compromised by enteric disorders or infection. Therapeutic intervention using monoclonal antibody (mAb) offers the potential for treatment with minimal off-target effects as well as the possibility of limited systemic exposure when administered orally. Critically, to achieve efficacy at luminal surfaces, mAb must remain stable and functionally active in the gastrointestinal environment. To better understand the impact of isotype, class, and molecular structure on the intestinal stability of recombinant antibodies, we used an in vitro simulated intestinal fluid (SIF) assay to evaluate a panel of antibody candidates for enteric mAb-based therapeutics. Recombinant IgG1 was the least stable following SIF incubation, while the stability of IgA generally increased upon polymerization, with subtle differences between subclasses. Notably, patterns of variability within and between mAbs suggest that variable regions contribute to mAb stability and potentially mediate mAb susceptibility to proteases. Despite relatively rapid degradation in SIF, mAbs targeting Enterotoxigenic Escherichia coli (ETEC) displayed functional activity following SIF treatment, with SIgA1 showing improved function compared to SIgA2. The results of this study have implications for the design of enteric therapeutics and subsequent selection of lead candidates based upon in vitro intestinal stability assessments.


Asunto(s)
Anticuerpos Monoclonales , Escherichia coli Enterotoxigénica , Tracto Gastrointestinal , Inmunoglobulina A , Inmunoglobulina G
3.
Vaccine ; 38(10): 2333-2339, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32008877

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea-associated illness in developing countries. There is currently no vaccine licensed to prevent ETEC and the development of an efficacious prophylaxis would provide an intervention with significant impact. Recent studies suggested that effective protection could be achieved by inducing immunity to block colonization of ETEC. Here, we evaluated the efficacy of secretory (s) IgA2 and dimeric (d) IgA2 of an anti-colonization factor antigen antibody, 68-61, in the Aotus nancymaae nonhuman primate (NHP) ETEC challenge model via oral and parental delivery. Thirty-nine animals were distributed across 3 groups of 13, and challenged with 5.0x1011 colony forming unit (CFU) of H10407 on Day 0. Group 1 received a dIgA2 68-61 subcutaneously on day 0. Group 2 received a SIgA2 68-61 orally on days -1, 0, and +1, and Group 3 received an irrelevant SIgA2 antibody orally on days -1, 0, and +1. All animals were observed for symptoms of diarrhea, and stools were collected for ETEC colony counts. Anti-CfaE SIgA2 treatment significantly lowered the attack rate, resulting in a protective efficacy of 74.1% (p = 0.025) in Group 2 as compared to Group 3. The anti-CfaE dIgA2 treatment group had reduced diarrheal attack rate, although the reduction did not reach significance (57.1%; p = 0.072) as compared to the irrelevant SIgA2 Group 3. Our results demonstrated the feasibility of oral administration of SIgA as a potential immunoprophylaxis against enteric infections. To our knowledge, this is the first study to demonstrate the efficacy of administrated SIgA in a nonhuman primate model.


Asunto(s)
Anticuerpos Antibacterianos/administración & dosificación , Diarrea/prevención & control , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Inmunoglobulina A Secretora/administración & dosificación , Administración Oral , Animales , Aotidae , Diarrea/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...