RESUMEN
Neutron scattering experiments at three-axes spectrometers (TAS) investigate magnetic and lattice excitations by measuring intensity distributions to understand the origins of materials properties. The high demand and limited availability of beam time for TAS experiments however raise the natural question whether we can improve their efficiency and make better use of the experimenter's time. In fact, there are a number of scientific problems that require searching for signals, which may be time consuming and inefficient if done manually due to measurements in uninformative regions. Here, we describe a probabilistic active learning approach that not only runs autonomously, i.e., without human interference, but can also directly provide locations for informative measurements in a mathematically sound and methodologically robust way by exploiting log-Gaussian processes. Ultimately, the resulting benefits can be demonstrated on a real TAS experiment and a benchmark including numerous different excitations.
RESUMEN
We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO4 in longitudinal magnetic fields. Our experiments reveal a quasi-plateau state induced by quantum fluctuations. This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap. In the high field regime where the quantum fluctuations are largely suppressed, we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity. Through detailed semi-classical calculations, we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.
RESUMEN
Magnetic skyrmions are topological solitons with a nanoscale winding spin texture that hold promise for spintronics applications1-4. Skyrmions have so far been observed in a variety of magnets that exhibit nearly parallel alignment for neighbouring spins, but theoretically skyrmions with anti-parallel neighbouring spins are also possible. Such antiferromagnetic skyrmions may allow more flexible control than conventional ferromagnetic skyrmions5-10. Here, by combining neutron scattering measurements and Monte Carlo simulations, we show that a fractional antiferromagnetic skyrmion lattice is stabilized in MnSc2S4 through anisotropic couplings. The observed lattice is composed of three antiferromagnetically coupled sublattices, and each sublattice is a triangular skyrmion lattice that is fractionalized into two parts with an incipient meron (half-skyrmion) character11,12. Our work demonstrates that the theoretically proposed antiferromagnetic skyrmions can be stabilized in real materials and represents an important step towards their implementation in spintronic devices.
RESUMEN
Temperature and field-dependent magnetization M(T, H ) measurements and neutron scattering study of a single crystal CeSb2 are presented. Several anomalies in magnetization curves have been confirmed, i.e., at 15.6 K, 12 K, and 9.8 K, respectively. These three transitions are all metamagnetic transitions, which shift to lower temperatures as the magnetic field increases. In contrast to the previous studies that the anomaly at 15.6 K has been suggested as paramagnetic to ferromagnetic phase transition, in our measurement no hysteresis loop around zero field with either H ⥠c or H ⥠c has been observed. The anomaly located at around 12 K is antiferromagnetic-like transition, and this turning point will clearly split into two when the magnetic field H ⩾ 2 kOe. A neutron scattering study reveals that the low temperature ground state of CeSb2 orders magnetically with commensurate propagation wave vectors k = (-1, ±1/6, 0) and k = (±1/6, -1, 0), with phase transition temperature T C â¼ 9.8 K.
RESUMEN
We use inelastic neutron scattering to study the effect of a magnetic field on the neutron spin resonance (E r = 3.6 meV) of superconducting FeSe (T c = 9 K). While a field aligned along the in-plane direction broadens and suppresses the resonance, a c-axis aligned field does so much more efficiently, consistent with the anisotropic field-induced suppression of the superfluid density from the heat capacity measurements. These results suggest that the resonance in FeSe is associated with the superconducting electrons arising from orbital selective quasiparticle excitations between the hole and electron Fermi surfaces.
RESUMEN
A phase transition is often accompanied by the appearance of an order parameter and symmetry breaking. Certain magnetic materials exhibit exotic hidden-order phases, in which the order parameters are not directly accessible to conventional magnetic measurements. Thus, experimental identification and theoretical understanding of a hidden order are difficult. Here we combine neutron scattering and thermodynamic probes to study the newly discovered rare-earth triangular-lattice magnet TmMgGaO4. Clear magnetic Bragg peaks at K points are observed in the elastic neutron diffraction measurements. More interesting, however, is the observation of sharp and highly dispersive spin excitations that cannot be explained by a magnetic dipolar order, but instead is the direct consequence of the underlying multipolar order that is "hidden" in the neutron diffraction experiments. We demonstrate that the observed unusual spin correlations and thermodynamics can be accurately described by a transverse field Ising model on the triangular lattice with an intertwined dipolar and ferro-multipolar order.
RESUMEN
Superconductivity in FeSe emerges from a nematic phase that breaks four-fold rotational symmetry in the iron plane. This phase may arise from orbital ordering, spin fluctuations or hidden magnetic quadrupolar order. Here we use inelastic neutron scattering on a mosaic of single crystals of FeSe, detwinned by mounting on a BaFe2As2 substrate to demonstrate that spin excitations are most intense at the antiferromagnetic wave vectors QAF = (±1, 0) at low energies E = 6-11 meV in the normal state. This two-fold (C2) anisotropy is reduced at lower energies, 3-5 meV, indicating a gapped four-fold (C4) mode. In the superconducting state, however, the strong nematic anisotropy is again reflected in the spin resonance (E = 3.6 meV) at QAF with incommensurate scattering around 5-6 meV. Our results highlight the extreme electronic anisotropy of the nematic phase of FeSe and are consistent with a highly anisotropic superconducting gap driven by spin fluctuations.
RESUMEN
dc-magnetization data measured down to 40 mK speak against conventional freezing and reinstate YbMgGaO_{4} as a triangular spin-liquid candidate. Magnetic susceptibility measured parallel and perpendicular to the c axis reaches constant values below 0.1 and 0.2 K, respectively, thus indicating the presence of gapless low-energy spin excitations. We elucidate their nature in the triple-axis inelastic neutron scattering experiment that pinpoints the low-energy (E≤J_{0}â¼0.2 meV) part of the excitation continuum present at low temperatures (T
RESUMEN
Nearly a century of research has established the Born-Oppenheimer approximation as a cornerstone of condensed-matter systems, stating that the motion of the atomic nuclei and electrons may be treated separately. Interactions beyond the Born-Oppenheimer approximation are at the heart of magneto-elastic functionalities and instabilities. We report comprehensive neutron spectroscopy and ab initio phonon calculations of the coupling between phonons, CEF-split localized 4f electron states, and conduction electrons in the paramagnetic regime of [Formula: see text], an archetypal Kondo lattice compound. We identify two distinct magneto-elastic hybrid excitations that form even though all coupling constants are small. First, we find a CEF-phonon bound state reminiscent of the vibronic bound state (VBS) observed in other materials. However, in contrast to an abundance of optical phonons, so far believed to be essential for a VBS, the VBS in [Formula: see text] arises from a comparatively low density of states of acoustic phonons. Second, we find a pronounced anticrossing of the CEF excitations with acoustic phonons at zero magnetic field not observed before. Remarkably, both magneto-elastic excitations are well developed despite considerable damping of the CEFs that arises dominantly by the conduction electrons. Taking together the weak coupling with the simultaneous existence of a distinct VBS and anticrossing in the same material in the presence of damping suggests strongly that similarly well-developed magneto-elastic hybrid excitations must be abundant in a wide range of materials. In turn, our study of the excitation spectra of [Formula: see text] identifies a tractable point of reference in the search for magneto-elastic functionalities and instabilities.
RESUMEN
We have systematically studied physical properties of Ba(Fe_{0.97}Cr_{0.03})_{2}(As_{1-x}P_{x})_{2}, where superconductivity in BaFe_{2}(As_{1-x}P_{x})_{2} is fully suppressed by just 3% of Cr substitution of Fe. A quantum critical point is revealed at xâ¼0.42, where non-Fermi-liquid behaviors similar to those in BaFe_{2}(As_{1-x}P_{x})_{2} are observed. Neutron diffraction and inelastic neutron scattering measurements suggest that the quantum critical point is associated with the antiferromagnetic order, which is not of conventional spin-density-wave type as evidenced by the ω/T scaling of spin excitations. On the other hand, no divergence of low-temperature nematic susceptibility is observed when x is decreased to 0.42 from higher doping level, demonstrating that there are no nematic quantum critical fluctuations. Our results suggest that non-Fermi-liquid behaviors in iron-based superconductors can be solely resulted from the antiferromagnetic quantum critical fluctuations, which cast doubts on the role of nematic fluctuations played in the normal-state properties in iron-based superconductors.
RESUMEN
We use cold neutron spectroscopy to study the low-energy spin excitations of superconducting (SC) FeSe0.4Te0.6 and essentially nonsuperconducting (NSC) FeSe0.45Te0.55. In contrast with BaFe2-x(Co,Ni)xAs2, where the low-energy spin excitations are commensurate both in the SC and normal state, the normal-state spin excitations in SC FeSe0.4Te0.6 are incommensurate and show an hourglass dispersion near the resonance energy. Since similar hourglass dispersion is also found in the NSC FeSe0.45Te0.55, we argue that the observed incommensurate spin excitations in FeSe(1-x)Tex are not directly associated with superconductivity. Instead, the results can be understood within a picture of Fermi surface nesting assuming extremely low Fermi velocities and spin-orbital coupling.
RESUMEN
We use neutron scattering to study the effect of electron doping on the structural or magnetic order in BaFe2As2. In the undoped state, BaFe2As2 exhibits simultaneous structural and magnetic phase transitions below 143 K. Upon electron doping to form BaFe1.96Ni0.04As2, the system first displays the lattice distortion near approximately 97 K, and then orders antiferromagnetically at 91 K before developing weak superconductivity below approximately 15 K. The effect of electron doping is to reduce the c-axis exchange coupling in BaFe2As2 and induce quasi-two-dimensional (2D) spin excitations. These results suggest that the transition from 3D spin waves to quasi-2D spin excitations by electron doping is important for the separated structural and magnetic phase transitions in iron arsenides.
RESUMEN
We use inelastic neutron scattering to study magnetic excitations of the FeAs-based superconductor BaFe1.9Ni0.1As2 above and below its T_{c} (=20 K). In addition to gradually open a spin gap at the in-plane antiferromagnetic ordering wave vector (1, 0, 0), the effect of superconductivity is to form a three-dimensional resonance with clear dispersion along the c axis. The intensity of the resonance develops like a superconducting order parameter, and the mode occurs at distinctively different energies at (1, 0, 0) and (1, 0, 1). If the resonance energy is associated with the superconducting gap energy Delta, then Delta is dependent on the wave vector transfers along the c axis. These results suggest that one must be careful in interpreting the superconducting gap energies obtained by surface sensitive probes such as scanning tunneling microscopy and angle resolved photoemission.