Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 16(1): 2400575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39312647

RESUMEN

Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.


Asunto(s)
Membrana Celular , Escherichia coli Enteropatógena , Proteínas de Unión al GTP rab , Humanos , Membrana Celular/metabolismo , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Exocitosis , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosfatidilinositoles/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Transducción de Señal
2.
Mol Ther ; 32(10): 3712-3728, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39086132

RESUMEN

Targeting multiple viral proteins is pivotal for sustained suppression of highly mutable viruses. In recent years, broadly neutralizing antibodies that target the influenza virus hemagglutinin and neuraminidase glycoproteins have been developed, and antibody monotherapy has been tested in preclinical and clinical studies to treat or prevent influenza virus infection. However, the impact of dual neutralization of the hemagglutinin and neuraminidase on the course of infection, as well as its therapeutic potential, has not been thoroughly tested. For this purpose, we generated a bispecific antibody that neutralizes both the hemagglutinin and the neuraminidase of influenza viruses. We demonstrated that this bispecific antibody has a dual-antiviral activity as it blocks infection and prevents the release of progeny viruses from the infected cells. We show that dual neutralization of the hemagglutinin and the neuraminidase by a bispecific antibody is advantageous over monoclonal antibody combination as it resulted an improved neutralization capacity and augmented the antibody effector functions. Notably, the bispecific antibody showed enhanced antiviral activity in influenza virus-infected mice, reduced mice mortality, and limited the virus mutation profile upon antibody administration. Thus, dual neutralization of the hemagglutinin and neuraminidase could be effective in controlling influenza virus infection.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Neuraminidasa , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Animales , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Ratones , Humanos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Anticuerpos Antivirales/inmunología , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Pruebas de Neutralización , Perros , Modelos Animales de Enfermedad , Células de Riñón Canino Madin Darby , Gripe Humana/inmunología , Gripe Humana/virología , Gripe Humana/tratamiento farmacológico , Femenino
3.
EMBO Rep ; 25(8): 3348-3372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38951710

RESUMEN

The centromere, defined by the enrichment of CENP-A (a Histone H3 variant) containing nucleosomes, is a specialised chromosomal locus that acts as a microtubule attachment site. To preserve centromere identity, CENP-A levels must be maintained through active CENP-A loading during the cell cycle. A central player mediating this process is the Mis18 complex (Mis18α, Mis18ß and Mis18BP1), which recruits the CENP-A-specific chaperone HJURP to centromeres for CENP-A deposition. Here, using a multi-pronged approach, we characterise the structure of the Mis18 complex and show that multiple hetero- and homo-oligomeric interfaces facilitate the hetero-octameric Mis18 complex assembly composed of 4 Mis18α, 2 Mis18ß and 2 Mis18BP1. Evaluation of structure-guided/separation-of-function mutants reveals structural determinants essential for cell cycle controlled Mis18 complex assembly and centromere maintenance. Our results provide new mechanistic insights on centromere maintenance, highlighting that while Mis18α can associate with centromeres and deposit CENP-A independently of Mis18ß, the latter is indispensable for the optimal level of CENP-A loading required for preserving the centromere identity.


Asunto(s)
Proteína A Centromérica , Centrómero , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/química , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Unión Proteica , Ciclo Celular/genética , Modelos Moleculares , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Nucleosomas/metabolismo , Nucleosomas/química , Proteínas Adaptadoras Transductoras de Señales
4.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038933

RESUMEN

Breast cancer (BC) is the most common malignancy affecting Western women today. It is estimated that as many as 10% of BC cases can be attributed to germline variants. However, the genetic basis of the majority of familial BC cases has yet to be identified. Discovering predisposing genes contributing to familial BC is challenging due to their presumed rarity, low penetrance, and complex biological mechanisms. Here, we focused on an analysis of rare missense variants in a cohort of 12 families of Middle Eastern origins characterized by a high incidence of BC cases. We devised a novel, high-throughput, variant analysis pipeline adapted for family studies, which aims to analyze variants at the protein level by employing state-of-the-art machine learning models and three-dimensional protein structural analysis. Using our pipeline, we analyzed 1218 rare missense variants that are shared between affected family members and classified 80 genes as candidate pathogenic. Among these genes, we found significant functional enrichment in peroxisomal and mitochondrial biological pathways which segregated across seven families in the study and covered diverse ethnic groups. We present multiple evidence that peroxisomal and mitochondrial pathways play an important, yet underappreciated, role in both germline BC predisposition and BC survival.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Predisposición Genética a la Enfermedad , Humanos , Neoplasias de la Mama/genética , Femenino , Mutación Missense , Linaje , Mutación de Línea Germinal
5.
J Chem Inf Model ; 64(12): 4630-4639, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38829021

RESUMEN

Microbial rhodopsins (MRs) are a diverse and abundant family of photoactive membrane proteins that serve as model systems for biophysical techniques. Optogenetics utilizes genetic engineering to insert specialized proteins into specific neurons or brain regions, allowing for manipulation of their activity through light and enabling the mapping and control of specific brain areas in living organisms. The obstacle of optogenetics lies in the fact that light has a limited ability to penetrate biological tissues, particularly blue light in the visible spectrum. Despite this challenge, most optogenetic systems rely on blue light due to the scarcity of red-shifted opsins. Finding additional red-shifted rhodopsins would represent a major breakthrough in overcoming the challenge of limited light penetration in optogenetics. However, determining the wavelength absorption maxima for rhodopsins based on their protein sequence is a significant hurdle. Current experimental methods are time-consuming, while computational methods lack accuracy. The paper introduces a new computational approach called RhoMax that utilizes structure-based geometric deep learning to predict the absorption wavelength of rhodopsins solely based on their sequences. The method takes advantage of AlphaFold2 for accurate modeling of rhodopsin structures. Once trained on a balanced train set, RhoMax rapidly and precisely predicted the maximum absorption wavelength of more than half of the sequences in our test set with an accuracy of 0.03 eV. By leveraging computational methods for absorption maxima determination, we can drastically reduce the time needed for designing new red-shifted microbial rhodopsins, thereby facilitating advances in the field of optogenetics.


Asunto(s)
Aprendizaje Profundo , Rodopsina , Rodopsina/química , Rodopsina/metabolismo , Modelos Moleculares , Secuencia de Aminoácidos , Conformación Proteica , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Optogenética/métodos
6.
Curr Opin Struct Biol ; 87: 102841, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795564

RESUMEN

Recent progress in protein structure prediction based on deep learning revolutionized the field of Structural Biology. Beyond single proteins, it also enabled high-throughput prediction of structures of protein-protein interactions. Despite the success in predicting complex structures, large macromolecular assemblies still require specialized approaches. Here we describe recent advances in modeling macromolecular assemblies using integrative and hierarchical approaches. We highlight applications that predict protein-protein interactions and challenges in modeling complexes based on the interaction networks, including the prediction of complex stoichiometry and heterogeneity.


Asunto(s)
Aprendizaje Profundo , Modelos Moleculares , Proteínas , Proteínas/química , Proteínas/metabolismo , Conformación Proteica , Biología Computacional/métodos , Humanos , Unión Proteica
8.
Nat Methods ; 21(3): 477-487, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326495

RESUMEN

Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and hierarchical assembly algorithm for predicting structures of large protein complexes utilizing pairwise interactions between subunits predicted by AlphaFold2. CombFold accurately predicted (TM-score >0.7) 72% of the complexes among the top-10 predictions in two datasets of 60 large, asymmetric assemblies. Moreover, the structural coverage of predicted complexes was 20% higher compared to corresponding Protein Data Bank entries. We applied the method on complexes from Complex Portal with known stoichiometry but without known structure and obtained high-confidence predictions. CombFold supports the integration of distance restraints based on crosslinking mass spectrometry and fast enumeration of possible complex stoichiometries. CombFold's high accuracy makes it a promising tool for expanding structural coverage beyond monomeric proteins.


Asunto(s)
Algoritmos , Bases de Datos de Proteínas , Espectrometría de Masas
9.
bioRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37293053

RESUMEN

Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and hierarchical assembly algorithm for predicting structures of large protein complexes utilizing pairwise interactions between subunits predicted by AlphaFold2. CombFold accurately predicted (TM-score > 0.7) 72% of the complexes among the Top-10 predictions in two datasets of 60 large, asymmetric assemblies. Moreover, the structural coverage of predicted complexes was 20% higher compared to corresponding PDB entries. We applied the method on complexes from Complex Portal with known stoichiometry but without known structure and obtained high-confidence predictions. CombFold supports the integration of distance restraints based on crosslinking mass spectrometry and fast enumeration of possible complex stoichiometries. CombFold's high accuracy makes it a promising tool for expanding structural coverage beyond monomeric proteins.

10.
Structure ; 31(7): 764-779.e8, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311459

RESUMEN

Cdc48 (VCP/p97) is a major AAA-ATPase involved in protein quality control, along with its canonical cofactors Ufd1 and Npl4 (UN). Here, we present novel structural insights into the interactions within the Cdc48-Npl4-Ufd1 ternary complex. Using integrative modeling, we combine subunit structures with crosslinking mass spectrometry (XL-MS) to map the interaction between Npl4 and Ufd1, alone and in complex with Cdc48. We describe the stabilization of the UN assembly upon binding with the N-terminal-domain (NTD) of Cdc48 and identify a highly conserved cysteine, C115, at the Cdc48-Npl4-binding interface which is central to the stability of the Cdc48-Npl4-Ufd1 complex. Mutation of Cys115 to serine disrupts the interaction between Cdc48-NTD and Npl4-Ufd1 and leads to a moderate decrease in cellular growth and protein quality control in yeast. Our results provide structural insight into the architecture of the Cdc48-Npl4-Ufd1 complex as well as its in vivo implications.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Adenosina Trifosfatasas/química , Saccharomyces cerevisiae/metabolismo , Unión Proteica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
11.
Proteomics ; 23(17): e2200341, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37070547

RESUMEN

Macromolecular assemblies play an important role in all cellular processes. While there has recently been significant progress in protein structure prediction based on deep learning, large protein complexes cannot be predicted with these approaches. The integrative structure modeling approach characterizes multi-subunit complexes by computational integration of data from fast and accessible experimental techniques. Crosslinking mass spectrometry is one such technique that provides spatial information about the proximity of crosslinked residues. One of the challenges in interpreting crosslinking datasets is designing a scoring function that, given a structure, can quantify how well it fits the data. Most approaches set an upper bound on the distance between Cα atoms of crosslinked residues and calculate a fraction of satisfied crosslinks. However, the distance spanned by the crosslinker greatly depends on the neighborhood of the crosslinked residues. Here, we design a deep learning model for predicting the optimal distance range for a crosslinked residue pair based on the structures of their neighborhoods. We find that our model can predict the distance range with the area under the receiver-operator curve of 0.86 and 0.7 for intra- and inter-protein crosslinks, respectively. Our deep scoring function can be used in a range of structure modeling applications.


Asunto(s)
Aprendizaje Profundo , Modelos Moleculares , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas , Proteínas/química
12.
Methods Enzymol ; 678: 237-262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36641210

RESUMEN

Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD<4Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.


Asunto(s)
Aprendizaje Profundo , Proproteína Convertasa 9 , Humanos , Difracción de Rayos X , Modelos Moleculares , Dispersión del Ángulo Pequeño , Complejo Antígeno-Anticuerpo , Microscopía por Crioelectrón , Proteínas/química , Epítopos , Conformación Proteica
13.
Cell Rep ; 41(3): 111512, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36223774

RESUMEN

The SARS-CoV-2 Omicron variant evades most neutralizing vaccine-induced antibodies and is associated with lower antibody titers upon breakthrough infections than previous variants. However, the mechanism remains unclear. Here, we find using a geometric deep-learning model that Omicron's extensively mutated receptor binding site (RBS) features reduced antigenicity compared with previous variants. Mice immunization experiments with different recombinant receptor binding domain (RBD) variants confirm that the serological response to Omicron is drastically attenuated and less potent. Analyses of serum cross-reactivity and competitive ELISA reveal a reduction in antibody response across both variable and conserved RBD epitopes. Computational modeling confirms that the RBS has a potential for further antigenicity reduction while retaining efficient receptor binding. Finally, we find a similar trend of antigenicity reduction over decades for hCoV229E, a common cold coronavirus. Thus, our study explains the reduced antibody titers associated with Omicron infection and reveals a possible trajectory of future viral evolution.


Asunto(s)
COVID-19 , Vacunas Virales , Ratones , Animales , Glicoproteína de la Espiga del Coronavirus , Pruebas de Neutralización , Anticuerpos Antivirales/química , SARS-CoV-2 , Anticuerpos Neutralizantes/química , Epítopos/química
14.
J Mol Biol ; 434(19): 167758, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36116806

RESUMEN

Predicting the various binding sites of a protein from its structure sheds light on its function and paves the way towards design of interaction inhibitors. Here, we report ScanNet, a freely available web server for prediction of protein-protein, protein - disordered protein and protein - antibody binding sites from structure. ScanNet (Spatio-Chemical Arrangement of Neighbors Network) is an end-to-end, interpretable geometric deep learning model that learns spatio-chemical patterns directly from 3D structures. ScanNet consistently outperforms Machine Learning models based on handcrafted features and comparative modeling approaches. The web server is linked to both the PDB and AlphaFoldDB, and supports user-provided structure files. Predictions can be readily visualized on the website via the Molstar web app and locally via ChimeraX. ScanNet is available at http://bioinfo3d.cs.tau.ac.il/ScanNet/.


Asunto(s)
Aprendizaje Profundo , Uso de Internet , Unión Proteica , Proteínas , Programas Informáticos , Sitios de Unión , Proteínas/química
15.
Front Immunol ; 13: 958584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032123

RESUMEN

Antibodies are a rapidly growing class of therapeutics. Recently, single domain camelid VHH antibodies, and their recognition nanobody domain (Nb) appeared as a cost-effective highly stable alternative to full-length antibodies. There is a growing need for high-throughput epitope mapping based on accurate structural modeling of the variable domains that share a common fold and differ in the Complementarity Determining Regions (CDRs). We develop a deep learning end-to-end model, NanoNet, that given a sequence directly produces the 3D coordinates of the backbone and Cß atoms of the entire VH domain. For the Nb test set, NanoNet achieves 3.16Å average RMSD for the most variable CDR3 loops and 2.65Å, 1.73Å for the CDR1, CDR2 loops, respectively. The accuracy for antibody VH domains is even higher: 2.38Å RMSD for CDR3 and 0.89Å, 0.96Å for the CDR1, CDR2 loops, respectively. NanoNet run times allow generation of ∼1M nanobody structures in less than 4 hours on a standard CPU computer enabling high-throughput structure modeling. NanoNet is available at GitHub: https://github.com/dina-lab3D/NanoNet.


Asunto(s)
Aprendizaje Profundo , Anticuerpos de Dominio Único , Secuencia de Aminoácidos , Anticuerpos , Regiones Determinantes de Complementariedad
16.
Cell Rep ; 39(13): 111004, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35738279

RESUMEN

Vaccine boosters and infection can facilitate the development of SARS-CoV-2 antibodies with improved potency and breadth. Here, we observe superimmunity in a camelid extensively immunized with the SARS-CoV-2 receptor-binding domain (RBD). We rapidly isolate a large repertoire of specific ultra-high-affinity nanobodies that bind strongly to all known sarbecovirus clades using integrative proteomics. These pan-sarbecovirus nanobodies (psNbs) are highly effective against SARS-CoV and SARS-CoV-2 variants, including Omicron, with the best median neutralization potency at single-digit nanograms per milliliter. A highly potent, inhalable, and bispecific psNb (PiN-31) is also developed. Structural determinations of 13 psNbs with the SARS-CoV-2 spike or RBD reveal five epitope classes, providing insights into the mechanisms and evolution of their broad activities. The highly evolved psNbs target small, flat, and flexible epitopes that contain over 75% of conserved RBD surface residues. Their potencies are strongly and negatively correlated with the distance of the epitopes from the receptor binding sites.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Anticuerpos de Dominio Único , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Humanos , SARS-CoV-2
17.
Nat Methods ; 19(6): 730-739, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637310

RESUMEN

Predicting the functional sites of a protein from its structure, such as the binding sites of small molecules, other proteins or antibodies, sheds light on its function in vivo. Currently, two classes of methods prevail: machine learning models built on top of handcrafted features and comparative modeling. They are, respectively, limited by the expressivity of the handcrafted features and the availability of similar proteins. Here, we introduce ScanNet, an end-to-end, interpretable geometric deep learning model that learns features directly from 3D structures. ScanNet builds representations of atoms and amino acids based on the spatio-chemical arrangement of their neighbors. We train ScanNet for detecting protein-protein and protein-antibody binding sites, demonstrate its accuracy-including for unseen protein folds-and interpret the filters learned. Finally, we predict epitopes of the SARS-CoV-2 spike protein, validating known antigenic regions and predicting previously uncharacterized ones. Overall, ScanNet is a versatile, powerful and interpretable model suitable for functional site prediction tasks. A webserver for ScanNet is available from http://bioinfo3d.cs.tau.ac.il/ScanNet/ .


Asunto(s)
COVID-19 , Aprendizaje Profundo , Sitios de Unión , Humanos , Unión Proteica , Proteínas/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
18.
Commun Biol ; 5(1): 465, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577850

RESUMEN

AbnA is an extracellular GH43 α-L-arabinanase from Geobacillus stearothermophilus, a key bacterial enzyme in the degradation and utilization of arabinan. We present herein its full-length crystal structure, revealing the only ultra-multimodular architecture and the largest structure to be reported so far within the GH43 family. Additionally, the structure of AbnA appears to contain two domains belonging to new uncharacterized carbohydrate-binding module (CBM) families. Three crystallographic conformational states are determined for AbnA, and this conformational flexibility is thoroughly investigated further using the "integrative structure determination" approach, integrating molecular dynamics, metadynamics, normal mode analysis, small angle X-ray scattering, dynamic light scattering, cross-linking, and kinetic experiments to reveal large functional conformational changes for AbnA, involving up to ~100 Å movement in the relative positions of its domains. The integrative structure determination approach demonstrated here may apply also to the conformational study of other ultra-multimodular proteins of diverse functions and structures.


Asunto(s)
Glicósido Hidrolasas , Glicósido Hidrolasas/química , Humanos
19.
bioRxiv ; 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35194608

RESUMEN

SARS-CoV-2 Omicron variant of concern (VOC) contains fifteen mutations on the receptor binding domain (RBD), evading most neutralizing antibodies from vaccinated sera. Emerging evidence suggests that Omicron breakthrough cases are associated with substantially lower antibody titers than other VOC cases. However, the mechanism remains unclear. Here, using a novel geometric deep-learning model, we discovered that the antigenic profile of Omicron RBD is distinct from the prior VOCs, featuring reduced antigenicity in its remodeled receptor binding sites (RBS). To substantiate our deep-learning prediction, we immunized mice with different recombinant RBD variants and found that the Omicron's extensive mutations can lead to a drastically attenuated serologic response with limited neutralizing activity in vivo , while the T cell response remains potent. Analyses of serum cross-reactivity and competitive ELISA with epitope-specific nanobodies revealed that the antibody response to Omicron was reduced across RBD epitopes, including both the variable RBS and epitopes without any known VOC mutations. Moreover, computational modeling confirmed that the RBS is highly versatile with a capacity to further decrease antigenicity while retaining efficient receptor binding. Longitudinal analysis showed that this evolutionary trend of decrease in antigenicity was also found in hCoV229E, a common cold coronavirus that has been circulating in humans for decades. Thus, our study provided unprecedented insights into the reduced antibody titers associated with Omicron infection, revealed a possible trajectory of future viral evolution and may inform the vaccine development against future outbreaks.

20.
iScience ; 24(9): 103014, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34522857

RESUMEN

Therapeutic and diagnostic efficacies of small biomolecules and chemical compounds are hampered by suboptimal pharmacokinetics. Here, we developed a repertoire of robust and high-affinity antihuman serum albumin nanobodies (NbHSA) that can be readily fused to small biologics for half-life extension. We characterized the thermostability, binding kinetics, and cross-species reactivity of NbHSAs, mapped their epitopes, and structurally resolved a tetrameric HSA-Nb complex. We parallelly determined the half-lives of a cohort of selected NbHSAs in an HSA mouse model by quantitative proteomics. Compared to short-lived control nanobodies, the half-lives of NbHSAs were drastically prolonged by 771-fold. NbHSAs have distinct and diverse pharmacokinetics, positively correlating with their albumin binding affinities at the endosomal pH. We then generated stable and highly bioactive NbHSA-cytokine fusion constructs "Duraleukin" and demonstrated Duraleukin's high preclinical efficacy for cancer treatment in a melanoma model. This high-quality and versatile Nb toolkit will help tailor drug half-life to specific medical needs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...