Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1867, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015919

RESUMEN

Metastatic melanoma develops once transformed melanocytic cells begin to de-differentiate into migratory and invasive melanoma cells with neural crest cell (NCC)-like and epithelial-to-mesenchymal transition (EMT)-like features. However, it is still unclear how transformed melanocytes assume a metastatic melanoma cell state. Here, we define DNA methylation changes that accompany metastatic progression in melanoma patients and discover Nuclear Receptor Subfamily 2 Group F, Member 2 - isoform 2 (NR2F2-Iso2) as an epigenetically regulated metastasis driver. NR2F2-Iso2 is transcribed from an alternative transcriptional start site (TSS) and it is truncated at the N-terminal end which encodes the NR2F2 DNA-binding domain. We find that NR2F2-Iso2 expression is turned off by DNA methylation when NCCs differentiate into melanocytes. Conversely, this process is reversed during metastatic melanoma progression, when NR2F2-Iso2 becomes increasingly hypomethylated and re-expressed. Our functional and molecular studies suggest that NR2F2-Iso2 drives metastatic melanoma progression by modulating the activity of full-length NR2F2 (Isoform 1) over EMT- and NCC-associated target genes. Our findings indicate that DNA methylation changes play a crucial role during metastatic melanoma progression, and their control of NR2F2 activity allows transformed melanocytes to acquire NCC-like and EMT-like features. This epigenetically regulated transcriptional plasticity facilitates cell state transitions and metastatic spread.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Línea Celular Tumoral , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Transición Epitelial-Mesenquimal/genética , Epigénesis Genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción COUP II/metabolismo
2.
Nat Commun ; 13(1): 844, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149678

RESUMEN

The combination of ultrahigh-throughput screening and sequencing informs on function and intragenic epistasis within combinatorial protein mutant libraries. Establishing a droplet-based, in vitro compartmentalised approach for robust expression and screening of protein kinase cascades (>107 variants/day) allowed us to dissect the intrinsic molecular features of the MKK-ERK signalling pathway, without interference from endogenous cellular components. In a six-residue combinatorial library of the MKK1 docking domain, we identified 29,563 sequence permutations that allow MKK1 to efficiently phosphorylate and activate its downstream target kinase ERK2. A flexibly placed hydrophobic sequence motif emerges which is defined by higher order epistatic interactions between six residues, suggesting synergy that enables high connectivity in the sequence landscape. Through positive epistasis, MKK1 maintains function during mutagenesis, establishing the importance of co-dependent residues in mammalian protein kinase-substrate interactions, and creating a scenario for the evolution of diverse human signalling networks.


Asunto(s)
Epistasis Genética , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatos/metabolismo , Catálisis , Humanos , MAP Quinasa Quinasa 1/química , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Fosforilación , Dominios Proteicos , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Especificidad por Sustrato
3.
Nature ; 595(7868): 578-584, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34135508

RESUMEN

Macrophages have a key role in shaping the tumour microenvironment (TME), tumour immunity and response to immunotherapy, which makes them an important target for cancer treatment1,2. However, modulating macrophages has proved extremely difficult, as we still lack a complete understanding of the molecular and functional diversity of the tumour macrophage compartment. Macrophages arise from two distinct lineages. Tissue-resident macrophages self-renew locally, independent of adult haematopoiesis3-5, whereas short-lived monocyte-derived macrophages arise from adult haematopoietic stem cells, and accumulate mostly in inflamed lesions1. How these macrophage lineages contribute to the TME and cancer progression remains unclear. To explore the diversity of the macrophage compartment in human non-small cell lung carcinoma (NSCLC) lesions, here we performed single-cell RNA sequencing of tumour-associated leukocytes. We identified distinct populations of macrophages that were enriched in human and mouse lung tumours. Using lineage tracing, we discovered that these macrophage populations differ in origin and have a distinct temporal and spatial distribution in the TME. Tissue-resident macrophages accumulate close to tumour cells early during tumour formation to promote epithelial-mesenchymal transition and invasiveness in tumour cells, and they also induce a potent regulatory T cell response that protects tumour cells from adaptive immunity. Depletion of tissue-resident macrophages reduced the numbers and altered the phenotype of regulatory T cells, promoted the accumulation of CD8+ T cells and reduced tumour invasiveness and growth. During tumour growth, tissue-resident macrophages became redistributed at the periphery of the TME, which becomes dominated by monocyte-derived macrophages in both mouse and human NSCLC. This study identifies the contribution of tissue-resident macrophages to early lung cancer and establishes them as a target for the prevention and treatment of early lung cancer lesions.


Asunto(s)
Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Macrófagos/inmunología , Microambiente Tumoral , Animales , Linfocitos T CD8-positivos/inmunología , Transición Epitelial-Mesenquimal , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Invasividad Neoplásica , Linfocitos T Reguladores/inmunología
4.
Nat Commun ; 10(1): 5023, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685822

RESUMEN

Melanoma, the deadliest skin cancer, remains largely incurable at advanced stages. Currently, there is a lack of animal models that resemble human melanoma initiation and progression. Recent studies using a Tyr-CreER driven mouse model have drawn contradictory conclusions about the potential of melanocyte stem cells (McSCs) to form melanoma. Here, we employ a c-Kit-CreER-driven model that specifically targets McSCs to show that oncogenic McSCs are a bona fide source of melanoma that expand in the niche, and then establish epidermal melanomas that invade into the underlying dermis. Further, normal Wnt and Endothelin niche signals during hair anagen onset are hijacked to promote McSC malignant transformation during melanoma induction. Finally, molecular profiling reveals strong resemblance of murine McSC-derived melanoma to human melanoma in heterogeneity and gene signatures. These findings provide experimental validation of the human melanoma progression model and key insights into the transformation and heterogeneity of McSC-derived melanoma.


Asunto(s)
Carcinogénesis/patología , Melanocitos/patología , Melanoma/patología , Células Madre Neoplásicas/patología , Animales , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/patología , Dermis/patología , Modelos Animales de Enfermedad , Epidermis/patología , Homeostasis , Humanos , Melanocitos/metabolismo , Ratones , Mutación/genética , Células Madre Neoplásicas/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Microambiente Tumoral , Vía de Señalización Wnt
6.
Oncogene ; 38(29): 5766-5777, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31239516

RESUMEN

We previously showed that KLF4, a gene highly expressed in murine prostate stem cells, blocks the progression of indolent intraepithelial prostatic lesions into aggressive and rapidly growing tumors. Here, we show that the anti-tumorigenic effect of KLF4 extends to PC3 human prostate cancer cells growing in the bone. We compared KLF4 null cells with cells transduced with a DOX-inducible KLF4 expression system, and find KLF4 function inhibits PC3 growth in monolayer and soft agar cultures. Furthermore, KLF4 null cells proliferate rapidly, forming large, invasive, and osteolytic tumors when injected into mouse femurs, whereas KLF4 re-expression immediately after their intra-femoral inoculation blocks tumor development and preserves a normal bone architecture. KLF4 re-expression in established KLF4 null bone tumors inhibits their osteolytic effects, preventing bone fractures and inducing an osteogenic response with new bone formation. In addition to these profound biological changes, KLF4 also induces a transcriptional shift from an osteolytic program in KLF4 null cells to an osteogenic program. Importantly, bioinformatic analysis shows that genes regulated by KLF4 overlap significantly with those expressed in metastatic prostate cancer patients and in three individual cohorts with bone metastases, strengthening the clinical relevance of the findings in our xenograft model.


Asunto(s)
Neoplasias Óseas/secundario , Factores de Transcripción de Tipo Kruppel/fisiología , Osteólisis/fisiopatología , Neoplasias de la Próstata/patología , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Estudios de Cohortes , Xenoinjertos , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
7.
Cell Stem Cell ; 24(3): 390-404.e8, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30713093

RESUMEN

Basal tumor propagating cells (TPCs) control squamous cell carcinoma (SCC) growth by self-renewing and differentiating into supra-basal SCC cells, which lack proliferative potential. While transcription factors such as SOX2 and KLF4 can drive these behaviors, their molecular roles and regulatory interactions with each other have remained elusive. Here, we show that PITX1 is specifically expressed in TPCs, where it co-localizes with SOX2 and TRP63 and determines cell fate in mouse and human SCC. Combining gene targeting with chromatin immunoprecipitation sequencing (ChIP-seq) and transcriptomic analyses reveals that PITX1 cooperates with SOX2 and TRP63 to sustain an SCC-specific transcriptional feed-forward circuit that maintains TPC-renewal, while inhibiting KLF4 expression and preventing KLF4-dependent differentiation. Conversely, KLF4 represses PITX1, SOX2, and TRP63 expression to prevent TPC expansion. This bi-stable, multi-input network reveals a molecular framework that explains self-renewal, aberrant differentiation, and SCC growth in mice and humans, providing clues for developing differentiation-inducing therapeutic strategies.


Asunto(s)
Carcinoma de Células Escamosas/genética , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción Paired Box/genética , Transcripción Genética , Animales , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Femenino , Humanos , Factor 4 Similar a Kruppel , Ratones , Ratones Desnudos , Factores de Transcripción Paired Box/metabolismo , Células Tumorales Cultivadas
8.
Cell Rep ; 25(11): 3006-3020.e7, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540935

RESUMEN

There is a considerable need to identify those individuals with prostate cancer who have indolent disease. We propose that genes that control adult stem cell homeostasis in organs with slow turnover, such as the prostate, control cancer fate. One such gene, KLF4, overexpressed in murine prostate stem cells, regulates their homeostasis, blocks malignant transformation, and controls the self-renewal of tumor-initiating cells. KLF4 loss induces the molecular features of aggressive cancer and converts PIN lesions to invasive sarcomatoid carcinomas; its re-expression in vivo reverses this process. Bioinformatic analysis links these changes to human cancer. KLF4 and its downstream targets make up a gene signature that identifies indolent tumors and predicts recurrence-free survival. This approach may improve prognosis and identify therapeutic targets for advanced cancer.


Asunto(s)
Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Homeostasis , Factores de Transcripción de Tipo Kruppel/genética , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Autorrenovación de las Células/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Transición Epitelial-Mesenquimal/genética , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones Endogámicos C57BL , Células Madre Neoplásicas/metabolismo , Fenotipo , Pronóstico
9.
Mol Cell Oncol ; 5(2): e1413495, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487897

RESUMEN

Using a functional proliferation reporter we identified quiescent tumor propagating cancer cells (TPCs) in intact squamous cell carcinomas, and found that TGFß signaling controls their reversible entry into a growth arrested state, which protects TPCs from chemotherapy. TPCs with compromised TGFß/Smad signaling can't enter quiescence and subsequently die from chemotherapy.

10.
J Mol Biol ; 430(7): 1004-1023, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29458126

RESUMEN

Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (kcat/KM=4.8×103s-1M-1) as well as arylsulfate 4-nitrophenyl sulfate (kcat/KM=12s-1M-1). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H218O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency.


Asunto(s)
Sinorhizobium meliloti/enzimología , Sulfatasas/química , Biocatálisis , Dominio Catalítico , Ésteres/metabolismo , Modelos Moleculares , Multimerización de Proteína , Especificidad por Sustrato , Sulfatasas/clasificación , Sulfatasas/metabolismo
11.
Cell Stem Cell ; 21(5): 650-664.e8, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100014

RESUMEN

Squamous cell carcinomas (SCCs) are heterogeneous tumors sustained by tumor-propagating cancer cells (TPCs). SCCs frequently resist chemotherapy through still unknown mechanisms. Here, we combine H2B-GFP-based pulse-chasing with cell-surface markers to distinguish quiescent from proliferative TPCs within SCCs. We find that quiescent TPCs resist DNA damage and exhibit increased tumorigenic potential in response to chemotherapy, whereas proliferative TPCs undergo apoptosis. Quiescence is regulated by TGF-ß/SMAD signaling, which directly regulates cell-cycle gene transcription to control a reversible G1 cell-cycle arrest, independent of p21CIP function. Indeed, genetic or pharmacological TGF-ß inhibition increases the susceptibility of TPCs to chemotherapy because it prevents entry into a quiescent state. These findings provide direct evidence that TPCs can reversibly enter a quiescent, chemoresistant state and thereby underscore the need for combinatorial approaches to improve treatment of chemotherapy-resistant SCCs.


Asunto(s)
Carcinoma de Células Escamosas/patología , Ciclo Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de Cabeza y Cuello/patología , Factor de Crecimiento Transformador beta/farmacología , Animales , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Cromatina/metabolismo , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/genética , Humanos , Ratones , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Coloración y Etiquetado
12.
Cell Stem Cell ; 20(5): 575-577, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475877

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) are refractory to therapeutic interventions. Chen et al. (2017) show that mouse and human HNSCCs and their metastases depend on Bmi1-expressing cancer stem cells and AP1 signaling and that simultaneously inhibiting Bmi1 or AP1, combined with Cisplatin, reduces tumor growth effectively in preclinical models.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Cisplatino/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Antineoplásicos/uso terapéutico , Humanos , Ratones , Modelos Biológicos , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello , Tamoxifeno/uso terapéutico
13.
EMBO J ; 36(13): 1963-1980, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28507225

RESUMEN

Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post-translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin-1) by RIPK4 (receptor-interacting serine-threonine kinase 4) during epidermal differentiation. With genome-editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo Phosphorylation of PKP1's N-terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK-PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.


Asunto(s)
Diferenciación Celular , Queratinocitos/fisiología , Placofilinas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Piel/citología , Células Madre/fisiología , Animales , Carcinogénesis , Células Cultivadas , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Fosforilación , Proteoma/análisis , Neoplasias Cutáneas , Trasplante de Tejidos
14.
Cell Stem Cell ; 19(6): 784-799, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27570068

RESUMEN

Hematopoietic-specific transcription factors require coactivators to communicate with the general transcription machinery and establish transcriptional programs that maintain hematopoietic stem cell (HSC) self-renewal, promote differentiation, and prevent malignant transformation. Mediator is a large coactivator complex that bridges enhancer-localized transcription factors with promoters, but little is known about Mediator function in adult stem cell self-renewal and differentiation. We show that MED12, a member of the Mediator kinase module, is an essential regulator of HSC homeostasis, as in vivo deletion of Med12 causes rapid bone marrow aplasia leading to acute lethality. Deleting other members of the Mediator kinase module does not affect HSC function, suggesting kinase-independent roles of MED12. MED12 deletion destabilizes P300 binding at lineage-specific enhancers, resulting in H3K27Ac depletion, enhancer de-activation, and consequent loss of HSC stemness signatures. As MED12 mutations have been described recently in blood malignancies, alterations in MED12-dependent enhancer regulation may control both physiological and malignant hematopoiesis.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Complejo Mediador/metabolismo , Animales , Apoptosis/genética , Médula Ósea/patología , Supervivencia Celular/genética , Cromatina/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Ratones , Unión Proteica , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/metabolismo
15.
PLoS One ; 9(12): e116114, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25541984

RESUMEN

Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.


Asunto(s)
Antígenos CD/inmunología , Neoplasias Encefálicas/patología , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Glioblastoma/patología , Glicoproteínas/inmunología , Células Madre Neoplásicas/patología , Péptidos/inmunología , Transducción Genética , Antígeno AC133 , Animales , Antígenos CD/análisis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Glioblastoma/genética , Glioblastoma/inmunología , Glicoproteínas/análisis , Humanos , Lentivirus/genética , Lentivirus/inmunología , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Péptidos/análisis , Células Tumorales Cultivadas
16.
European J Org Chem ; 2014(18): 3930-3034, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25232289

RESUMEN

The substrate scope of inverting alkylsulfatase Pisa1 was extended towards benzylic sec-sulfate esters by suppression of competing non-enzymatic autohydrolysis by addition of dimethyl sulfoxide as co-solvent. Detailed investigation of the mechanism of autohydrolysis in 18O-labeled buffer by using an enantiopure sec-benzylic sulfate ester as substrate revealed that from the three possible pathways (i) inverting SN2-type nucleophilic attack of [OH-] at the benzylic carbon represents the major pathway, whereas (ii) SN1-type formation of a planar benzylic carbenium ion leading to racemization was a minor event, and (iii) Retaining SN2-type nucleophilic attack at sulfur took place at the limits of detection. The data obtained are interpreted by analysis of Hammett constants of meta substituents.

17.
Nat Commun ; 5: 4511, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25077433

RESUMEN

Although the principles that balance stem cell self-renewal and differentiation in normal tissue homeostasis are beginning to emerge, it is still unclear whether cancer cells with tumour initiating potential are similarly governed, or whether they have acquired distinct mechanisms to sustain self-renewal and long-term tumour growth. Here we show that the transcription factor Sox2, which is not expressed in normal skin epithelium and is dispensable for epidermal homeostasis, marks tumour initiating cells (TICs) in cutaneous squamous cell carcinomas (SCCs). We demonstrate that Sox2 is required for SCC growth in mouse and human, where it enhances Nrp1/Vegf signalling to promote the expansion of TICs along the tumour-stroma interface. Our findings suggest that distinct transcriptional programmes govern self-renewal and long-term growth of TICs and normal skin epithelial stem and progenitor cells. These programmes present promising diagnostic markers and targets for cancer-specific therapies.


Asunto(s)
Carcinoma de Células Escamosas/genética , Células Madre Neoplásicas/metabolismo , Neuropilina-1/genética , Factores de Transcripción SOXB1/genética , Neoplasias Cutáneas/genética , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Neuropilina-1/antagonistas & inhibidores , Neuropilina-1/metabolismo , Especificidad de Órganos , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXB1/antagonistas & inhibidores , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Piel/metabolismo , Piel/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Células Madre/citología , Células Madre/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Transcripción Genética , Microambiente Tumoral/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
PLoS One ; 9(3): e91343, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24621654

RESUMEN

Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Transporte de Nucleobases/química , Proteínas de Transporte de Nucleobases/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Unión Competitiva , Datos de Secuencia Molecular , Mutación , Proteínas de Transporte de Nucleobases/genética , Relación Estructura-Actividad , Especificidad por Sustrato
19.
Appl Microbiol Biotechnol ; 98(4): 1485-96, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24352732

RESUMEN

This review gives an overview on the occurrence of sulfatases in Prokaryota, Eukaryota and Archaea. The mechanism of enzymes acting with retention or inversion of configuration during sulfate ester hydrolysis is discussed taking two complementary examples. Methods for the discovery of novel alkyl sulfatases are described by way of sequence-based search and enzyme induction. A comprehensive list of organisms with their respective substrate scope regarding prim- and sec-alkyl sulfate esters allows to assess the capabilities and limitations of various biocatalysts employed as whole cell systems or as purified enzymes with respect to their activities and enantioselectivities. Methods for immobilization and selectivity enhancement by addition of metal ions or organic (co)solvents are summarised.


Asunto(s)
Sulfatasas/química , Sulfatasas/metabolismo , Archaea/enzimología , Hidrólisis , Pseudomonas aeruginosa/enzimología , Estereoisomerismo , Ésteres del Ácido Sulfúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...