Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(32): e2301939, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37752764

RESUMEN

The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.


Asunto(s)
Antineoplásicos , Histonas , Compuestos Organometálicos , Humanos , Histonas/metabolismo , Metabolismo de los Lípidos , Acetilación , Acetilcoenzima A/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Lípidos
2.
Pharmaceutics ; 14(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35213972

RESUMEN

Cellular energy metabolism is reprogrammed in cancer to fuel proliferation. In oncological therapy, treatment resistance remains an obstacle and is frequently linked to metabolic perturbations. Identifying metabolic changes as vulnerabilities opens up novel approaches for the prevention or targeting of acquired therapy resistance. Insights into metabolic alterations underlying ruthenium-based chemotherapy resistance remain widely elusive. In this study, colon cancer HCT116 and pancreatic cancer Capan-1 cells were selected for resistance against the clinically evaluated ruthenium complex sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (BOLD-100). Gene expression profiling identified transcriptional deregulation of carbohydrate metabolism as a response to BOLD-100 and in resistance against the drug. Mechanistically, acquired BOLD-100 resistance is linked to elevated glucose uptake and an increased lysosomal compartment, based on a defect in downstream autophagy execution. Congruently, metabolomics suggested stronger glycolytic activity, in agreement with the distinct hypersensitivity of BOLD-100-resistant cells to 2-deoxy-d-glucose (2-DG). In resistant cells, 2-DG induced stronger metabolic perturbations associated with ER stress induction and cytoplasmic lysosome deregulation. The combination with 2-DG enhanced BOLD-100 activity against HCT116 and Capan-1 cells and reverted acquired BOLD-100 resistance by synergistic cell death induction and autophagy disturbance. This newly identified enhanced glycolytic activity as a metabolic vulnerability in BOLD-100 resistance suggests the targeting of glycolysis as a promising strategy to support BOLD-100 anticancer activity.

3.
Dalton Trans ; 46(36): 12114-12124, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28862707

RESUMEN

Within this work we aimed to improve the pharmacodynamics and toxicity profile of organoruthenium and -rhodium complexes which had previously been found to be highly potent in vitro but showed unselective activity in vivo. Different organometallic complexes were attached to a degradable poly(organo)phosphazene macromolecule, prepared via controlled polymerization techniques. The conjugation to hydrophilic polymers was designed to increase the aqueous solubility of the typically poorly soluble metal-based half-sandwich compounds with the aim of a controlled, pH-triggered release of the active metallodrug. The synthesized conjugates and their characteristics have been thoroughly studied by means of 31P NMR and UV-Vis spectroscopy, ICP-MS analyses and SEC coupled to ICP-MS. In order to assess their potential as possible anticancer drug candidates, the complexes, as well as their respective macromolecular prodrug formulations were tested against three different cancer cell lines in cell culture. Subsequently, the anticancer activity and organ distribution of the poly(organo)phosphazene drug conjugates were explored in vivo in mice bearing CT-26 colon carcinoma. Our investigations revealed a beneficial influence of this macromolecular prodrug by a significant reduction of adverse effects compared to the free metallodrugs.


Asunto(s)
Antineoplásicos/síntesis química , Compuestos Organofosforados/química , Polímeros/química , Rodio/química , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacocinética , Complejos de Coordinación/uso terapéutico , Portadores de Fármacos/química , Liberación de Fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Profármacos/síntesis química , Profármacos/farmacología , Profármacos/uso terapéutico , Distribución Tisular , Trasplante Heterólogo
4.
Cancer Lett ; 404: 79-88, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28716523

RESUMEN

The ruthenium drug and GRP78 inhibitor KP1339/IT-139 has already demonstrated promising anticancer activity in a phase I clinical trial. This study aimed to identify mechanisms underlying increased sensitivity to KP1339 treatment. Based on a screen utilizing 23 cell lines, a small panel was selected to compare KP1339-sensitive and low-responsive models. KP1339 sensitivity was neither based on differences in ruthenium accumulation, nor sensitivity to oxidative stress or constituents of KP1339 (ruthenium chloride and indazole). Subsequently, the biochemical response to KP1339 was analyzed using whole genome expression arrays indicating that, while sensitive cell lines were characterized by "response to chemical stimuli" and "regulation of cell death", low-responsive cells preferentially activated pathways controlling cell cycle, DNA repair, and metabolism. Cell culture experiments confirmed that, while low-responsive cells executed cell cycle arrest in G2 phase, pronounced apoptosis induction via activation of caspase 8 was found in sensitive cells. Cell death induction is based on a unique disruption of the ER homeostasis by depletion of key cellular chaperones including GRP78 in combination with enhanced KP1339-mediated protein damage.


Asunto(s)
Antineoplásicos/farmacología , Caspasa 8/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Proteínas de Choque Térmico/antagonistas & inhibidores , Compuestos Organometálicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , ARN Mensajero/metabolismo , Rutenio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...