Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781317

RESUMEN

Plants must cope with a variety of stressors during their life cycle, and the adaptive responses to these environmental cues involve all cellular organelles. Among them, comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their core set of neutral lipids and associated surface proteins to the rewiring of cellular processes in response to stress. Here, we analyzed the changes that occur in the lipidome and proteome of Arabidopsis (Arabidopsis thaliana) leaves after pathogen infection with Botrytis cinerea or Pseudomonas syringae, or after heat stress. Analyses were carried out in wild-type plants and the oil-rich double mutant trigalactosyldiacylglycerol1-1 sugar dependent 1-4 (tgd1-1 sdp1-4) that allowed for an allied study of the LD proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based methods, we showed that a hyperaccumulation of the primary LD core lipid triacylglycerol is a general response to stress and that acyl chain and sterol composition are remodeled during cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-treated leaves highlighted the plasticity of the LD proteome as part of the general stress response. We further identified at least two additional LD-associated proteins, whose localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular adaptation processes that underlie how plants respond to environmental stress.

2.
Plant J ; 117(5): 1466-1486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059656

RESUMEN

The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and ß-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.


Asunto(s)
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteoma/metabolismo , Germinación , Procesos Heterotróficos , Lipasa/metabolismo , Plantones/metabolismo , Esporas/metabolismo , Bryopsida/metabolismo , Semillas/metabolismo
3.
Sci Rep ; 13(1): 22560, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110595

RESUMEN

This study explores the sphingolipid class of oligohexosylceramides (OHCs), a rarely studied group, in barley (Hordeum vulgare L.) through a new lipidomics approach. Profiling identified 45 OHCs in barley (Hordeum vulgare L.), elucidating their fatty acid (FA), long-chain base (LCB) and sugar residue compositions; and was accomplished by monophasic extraction followed by reverse-phased high performance liquid chromatography electrospray ionisation quadrupole-time-of-flight tandem mass spectrometry (HPLC-ESI-QqTOF-MS/MS) employing parallel reaction monitoring (PRM). Results revealed unknown ceramide species and highlighted distinctive FA and LCB compositions when compared to other sphingolipid classes. Structurally, the OHCs featured predominantly trihydroxy LCBs associated with hydroxylated FAs and oligohexosyl residues consisting of two-five glucose units in a linear 1 → 4 linkage. A survey found OHCs in tissues of major cereal crops while noting their absence in conventional dicot model plants. This study found salinity stress had only minor effects on the OHC profile in barley roots, leaving questions about their precise functions in plant biology unanswered.


Asunto(s)
Glicoesfingolípidos Neutros , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Grano Comestible , Esfingolípidos , Ácidos Grasos , Espectrometría de Masa por Ionización de Electrospray/métodos
4.
Bio Protoc ; 13(16): e4746, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37638300

RESUMEN

Pectin is a complex polysaccharide present in the plant cell wall, whose composition is constantly remodelled to adapt to environmental or developmental changes. Mutants with altered pectin composition have been reported to exhibit altered stress or pathogen resistance. Understanding the link between mutant phenotypes and their pectin composition requires robust analytical methods to detect changes in the relative monosaccharide composition. Here, we describe a quick and efficient gas chromatography-mass spectrometry (GC-MS)-based method that allows the differential analysis of pectin monosaccharide composition in plants under different conditions or between mutant plants and their respective wild types. Pectin is extracted from seed mucilage or from the alcohol-insoluble residue prepared from leaves or other organs and is subsequently hydrolysed with trifluoracetic acid. The resulting acidic and neutral monosaccharides are then derivatised and measured simultaneously by GC-MS. Key features Comparative analysis of monosaccharide content in Arabidopsis-derived pectin between different genotypes or different treatments. Procedures for two sources of pectin are shown: seed coat mucilage and alcohol-insoluble residue. Allows quick analyses of neutral and acidic monosaccharides simultaneously. Graphical overview.

5.
Bio Protoc ; 13(16): e4740, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37638304

RESUMEN

Yield losses attributed to plant pathogens pose a serious threat to plant productivity and food security. Botrytis cinerea is one of the most devastating plant pathogens, infecting a wide array of plant species; it has also been established as a model organism to study plant-pathogen interactions. In this context, development of different assays to follow the relative success of B. cinerea infections is required. Here, we describe two methods to quantify B. cinerea development in Arabidopsis thaliana genotypes through measurements of lesion development and quantification of fungal genomic DNA in infected tissues. This provides two independent techniques that are useful in assessing the susceptibility or tolerance of different Arabidopsis genotypes to B. cinerea. Key features Protocol for the propagation of the necrotrophic plant pathogen fungus Botrytis cinerea and spore production. Two methods of Arabidopsis thaliana infection with the pathogen using droplet and spray inoculation. Two readouts, either by measuring lesion size or by the quantification of fungal DNA using quantitative PCR. The two methods are applicable across plant species susceptible the B. cinerea. Graphical overview A simplified overview of the droplet and spray infection methods used for the determination of B. cinerea growth in different Arabidopsis genotypes.

6.
Nat Plants ; 9(9): 1419-1438, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640935

RESUMEN

Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here we used fine-combed RNA sequencing in tandem with a photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study the combinatory effects of stress response using clustering along gradients. Mesotaenium shares with land plants major hubs in genetic networks underpinning stress response and acclimation. Our data suggest that lipid droplet formation and plastid and cell wall-derived signals have denominated molecular programmes since more than 600 million years of streptophyte evolution-before plants made their first steps on land.


Asunto(s)
Aclimatación , Pared Celular , Biomasa , Redes Reguladoras de Genes
7.
Clin Oral Implants Res ; 34(3): 209-220, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36692161

RESUMEN

OBJECTIVES: The objective of this study is to compare monolithic hybrid abutment crowns (screw-retained) versus monolithic hybrid abutments with adhesively cemented monolithic single-tooth crowns. MATERIALS AND METHODS: Twenty subjects in need of an implant-borne restoration were randomly assigned to receive either a cement-retained (CRR) or a screw-retained (SRR) implant-supported monolithic lithium disilicate (LS2 ) reconstruction. Each patient received a titanium implant with in internal conic connection. After osseointegration and second-stage surgery, healing abutments were placed for about 10 days. The type of restoration (CRR vs. SRR) was randomly assigned, and the restorations were manufactured of monolithic LS2 . Both types of restorations, CRR and SRR, were based on a titanium component (Ti-base) that was bonded to the abutment (CRR) or the crown (SRR). The follow-up period for all restoration was 36 months. Clinical outcome was evaluated according to Functional Implant Prosthetic Score (FIPS). Quality of live (OHIP) and patient's satisfaction were assessed using patient-reported outcome measures (PROMs). Primary endpoint was loss of restoration for any reason. Kaplan-Meier curves were constructed and log-rank testing was performed (p < .05). RESULTS: One restoration of group CRR failed after 6 months due to loss of adhesion between Ti-base and individual abutment. No further biological or technical failures occurred. Kaplan-Meier analysis showed no significant difference between both treatment options (p = .317). There was no statistically significant difference between both types of restoration, neither for FIPS, OHIP, treatment time nor patient satisfaction (p > .05). CONCLUSION: Monolithic hybrid abutment crowns (screw-retained) and monolithic hybrid abutment with adhesively cemented monolithic crowns using lithium disilicate showed no statistically significant difference for implant-based reconstructions in this pilot RCT setting.


Asunto(s)
Diseño de Implante Dental-Pilar , Titanio , Humanos , Circonio , Diseño Asistido por Computadora , Fracaso de la Restauración Dental , Coronas , Tornillos Óseos , Pilares Dentales
8.
Plant J ; 112(2): 518-534, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050843

RESUMEN

There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cyperus , Proteoma/metabolismo , Arabidopsis/genética , Ácido Abscísico/metabolismo , Espectrometría de Masas en Tándem , Semillas/genética , Cyperus/genética , Cyperus/metabolismo , Factores de Transcripción/metabolismo , Agua/metabolismo , Lípidos , Proteínas de Arabidopsis/metabolismo
9.
Sci Adv ; 8(37): eabo7639, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112685

RESUMEN

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.


Asunto(s)
Encéfalo , Dieta Cetogénica , Animales , Encéfalo/metabolismo , Carbohidratos , Cuerpos Cetónicos/metabolismo , Ratones , Proteoma/metabolismo
10.
New Phytol ; 236(3): 833-838, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35851478

RESUMEN

The number of described contact sites between different subcellular compartments and structures in eukaryotic cells has increased dramatically in recent years and, as such, has substantially reinforced the well-known premise that these kinds of connections are essential for overall cellular organization and the proper functioning of cellular metabolic and signaling pathways. Here, we discuss contact sites involving plant lipid droplets (LDs), including LD-endoplasmic reticulum (ER) connections that mediate the biogenesis of new LDs at the ER, LD-peroxisome connections, that facilitate the degradation of LD-stored triacylglycerols (TAGs), and the more recently discovered LD-plasma membrane connections, which involve at least three novel proteins, but have a yet unknown physiological function(s).


Asunto(s)
Amigos , Gotas Lipídicas , Retículo Endoplásmico/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Plantas , Triglicéridos/metabolismo
11.
Plant Physiol ; 189(3): 1794-1813, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35485198

RESUMEN

Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Xilosidasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Xilosidasas/genética , Xilosidasas/metabolismo
12.
Plant Cell ; 34(6): 2424-2448, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35348751

RESUMEN

Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Gotas Lipídicas/metabolismo , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/metabolismo
13.
Plant Physiol ; 189(2): 490-515, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302599

RESUMEN

After reaching the stigma, pollen grains germinate and form a pollen tube that transports the sperm cells to the ovule. Due to selection pressure between pollen tubes, pollen grains likely evolved mechanisms to quickly adapt to temperature changes to sustain elongation at the highest possible rate. We investigated these adaptions in tobacco (Nicotiana tabacum) pollen tubes grown in vitro under 22°C and 37°C by a multi-omics approach including lipidomic, metabolomic, and transcriptomic analysis. Both glycerophospholipids and galactoglycerolipids increased in saturated acyl chains under heat stress (HS), while triacylglycerols (TGs) changed less in respect to desaturation but increased in abundance. Free sterol composition was altered, and sterol ester levels decreased. The levels of sterylglycosides and several sphingolipid classes and species were augmented. Most amino acid levels increased during HS, including the noncodogenic amino acids γ-amino butyrate and pipecolate. Furthermore, the sugars sedoheptulose and sucrose showed higher levels. Also, the transcriptome underwent pronounced changes with 1,570 of 24,013 genes being differentially upregulated and 813 being downregulated. Transcripts coding for heat shock proteins and many transcriptional regulators were most strongly upregulated but also transcripts that have so far not been linked to HS. Transcripts involved in TG synthesis increased, while the modulation of acyl chain desaturation seemed not to be transcriptionally controlled, indicating other means of regulation. In conclusion, we show that tobacco pollen tubes are able to rapidly remodel their lipidome under HS likely by post-transcriptional and/or post-translational regulation.


Asunto(s)
Nicotiana , Tubo Polínico , Respuesta al Choque Térmico/genética , Lípidos , Tubo Polínico/genética , Tubo Polínico/metabolismo , Esteroles/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
14.
Environ Microbiol Rep ; 14(1): 70-84, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34786867

RESUMEN

Roundup® is the brand name for herbicide solutions containing glyphosate, which specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase of the shikimate pathway. The inhibition of the EPSP synthase causes plant death because EPSP is required for biosynthesis of aromatic amino acids. Glyphosate also inhibits the growth of archaea, bacteria, Apicomplexa, algae and fungi possessing an EPSP synthase. Here, we have characterized two glyphosate-resistant bacteria from a Roundup solution. Taxonomic classification revealed that the isolates 1CH1 and 2CH1 are Burkholderia anthina and Burkholderia cenocepacia strains respectively. Both isolates cannot utilize glyphosate as a source of phosphorus and synthesize glyphosate-sensitive EPSP synthase variants. Burkholderia. anthina 1CH1 and B. cenocepacia 2CH1 tolerate high levels of glyphosate because the herbicide is not taken up by the bacteria. Previously, it has been observed that the exposure of soil bacteria to herbicides like glyphosate promotes the development of antibiotic resistances. Antibiotic sensitivity testing revealed that the only the B. cenocepacia 2CH1 isolate showed increased resistance to a variety of antibiotics. Thus, the adaptation of B. anthina 1CH1 and B. cenocepacia 2CH1 to glyphosate did not generally increase the antibiotic resistance of both bacteria. However, our study confirms the genomic adaptability of bacteria belonging to the genus Burkholderia.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa , Burkholderia cenocepacia , 3-Fosfoshikimato 1-Carboxiviniltransferasa/química , 3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Burkholderia , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Glicina/análogos & derivados , Glicina/química , Glicina/farmacología , Glifosato
15.
New Phytol ; 233(5): 2185-2202, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931304

RESUMEN

Pollen tubes require a tightly regulated pectin secretion machinery to sustain the cell wall plasticity required for polar tip growth. Involved in this regulation at the apical plasma membrane are proteins and signaling molecules, including phosphoinositides and phosphatidic acid (PA). However, the contribution of diacylglycerol kinases (DGKs) is not clear. We transiently expressed tobacco DGKs in pollen tubes to identify a plasma membrane (PM)-localized isoform, and then to study its effect on pollen tube growth, pectin secretion and lipid signaling. In order to potentially downregulate DGK5 function, we overexpressed an inactive variant. Only one of eight DGKs displayed a confined localization at the apical PM. We could demonstrate its enzymatic activity and that a kinase-dead variant was inactive. Overexpression of either variant led to differential perturbations including misregulation of pectin secretion. One mode of regulation could be that DGK5-formed PA regulates phosphatidylinositol 4-phosphate 5-kinases, as overexpression of the inactive DGK5 variant not only led to a reduction of PA but also of phosphatidylinositol 4,5-bisphosphate levels and suppressed related growth phenotypes. We conclude that DGK5 is an additional player of polar tip growth that regulates pectin secretion probably in a common pathway with PI4P 5-kinases.


Asunto(s)
Nicotiana , Tubo Polínico , Membrana Celular/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Fosfatidilinositoles/metabolismo , Nicotiana/metabolismo
16.
Cell Rep ; 37(4): 109889, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34706227

RESUMEN

Astrocyte-derived cholesterol supports brain cells under physiological conditions. However, in demyelinating lesions, astrocytes downregulate cholesterol synthesis, and the cholesterol that is essential for remyelination has to originate from other cellular sources. Here, we show that repair following acute versus chronic demyelination involves distinct processes. In particular, in chronic myelin disease, when recycling of lipids is often defective, de novo neuronal cholesterol synthesis is critical for regeneration. By gene expression profiling, genetic loss-of-function experiments, and comprehensive phenotyping, we provide evidence that neurons increase cholesterol synthesis in chronic myelin disease models and in patients with multiple sclerosis (MS). In mouse models, neuronal cholesterol facilitates remyelination specifically by triggering oligodendrocyte precursor cell proliferation. Our data contribute to the understanding of disease progression and have implications for therapeutic strategies in patients with MS.


Asunto(s)
Colesterol , Esclerosis Múltiple , Vaina de Mielina , Células Precursoras de Oligodendrocitos/metabolismo , Remielinización/genética , Animales , Colesterol/biosíntesis , Colesterol/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo
17.
Nat Neurosci ; 24(1): 47-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33349711

RESUMEN

The repair of inflamed, demyelinated lesions as in multiple sclerosis (MS) necessitates the clearance of cholesterol-rich myelin debris by microglia/macrophages and the switch from a pro-inflammatory to an anti-inflammatory lesion environment. Subsequently, oligodendrocytes increase cholesterol levels as a prerequisite for synthesizing new myelin membranes. We hypothesized that lesion resolution is regulated by the fate of cholesterol from damaged myelin and oligodendroglial sterol synthesis. By integrating gene expression profiling, genetics and comprehensive phenotyping, we found that, paradoxically, sterol synthesis in myelin-phagocytosing microglia/macrophages determines the repair of acutely demyelinated lesions. Rather than producing cholesterol, microglia/macrophages synthesized desmosterol, the immediate cholesterol precursor. Desmosterol activated liver X receptor (LXR) signaling to resolve inflammation, creating a permissive environment for oligodendrocyte differentiation. Moreover, LXR target gene products facilitated the efflux of lipid and cholesterol from lipid-laden microglia/macrophages to support remyelination by oligodendrocytes. Consequently, pharmacological stimulation of sterol synthesis boosted the repair of demyelinated lesions, suggesting novel therapeutic strategies for myelin repair in MS.


Asunto(s)
Enfermedades Desmielinizantes/patología , Microglía/fisiología , Esteroles/biosíntesis , Animales , Colesterol/metabolismo , Desmosterol/metabolismo , Encefalomielitis Autoinmune Experimental , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación/metabolismo , Inflamación/patología , Metabolismo de los Lípidos , Receptores X del Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple , Oligodendroglía/metabolismo , Fagocitosis , Escualeno/metabolismo
18.
mBio ; 13(1): e0360221, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35130724

RESUMEN

In Bacillus subtilis and other Gram-positive bacteria, cyclic di-AMP is an essential second messenger that signals potassium availability by binding to a variety of proteins. In some bacteria, c-di-AMP also binds to the pyruvate carboxylase to inhibit its activity. We have discovered that in B. subtilis the c-di-AMP target protein DarB, rather than c-di-AMP itself, specifically binds to pyruvate carboxylase both in vivo and in vitro. This interaction stimulates the activity of the enzyme, as demonstrated by in vitro enzyme assays and in vivo metabolite determinations. Both the interaction and the activation of enzyme activity require apo-DarB and are inhibited by c-di-AMP. Under conditions of potassium starvation and corresponding low c-di-AMP levels, the demand for citric acid cycle intermediates is increased. Apo-DarB helps to replenish the cycle by activating both pyruvate carboxylase gene expression and enzymatic activity via triggering the stringent response as a result of its interaction with the (p)ppGpp synthetase Rel and by direct interaction with the enzyme, respectively. IMPORTANCE If bacteria experience a starvation for potassium, by far the most abundant metal ion in every living cell, they have to activate high-affinity potassium transporters, switch off growth activities such as translation and transcription of many genes or replication, and redirect the metabolism in a way that the most essential functions of potassium can be taken over by metabolites. Importantly, potassium starvation triggers a need for glutamate-derived amino acids. In many bacteria, the responses to changing potassium availability are orchestrated by a nucleotide second messenger, cyclic di-AMP. c-di-AMP binds to factors involved directly in potassium homeostasis and to dedicated signal transduction proteins. Here, we demonstrate that in the Gram-positive model organism Bacillus subtilis, the c-di-AMP receptor protein DarB can bind to and, thus, activate pyruvate carboxylase, the enzyme responsible for replenishing the citric acid cycle. This interaction takes place under conditions of potassium starvation if DarB is present in the apo form and the cells are in need of glutamate. Thus, DarB links potassium availability to the control of central metabolism.


Asunto(s)
Bacillus subtilis , AMP Cíclico , AMP Cíclico/metabolismo , Bacillus subtilis/genética , Piruvato Carboxilasa/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Mensajero Secundario/fisiología , Fosfatos de Dinucleósidos/metabolismo , Ácido Glutámico/metabolismo , Potasio/metabolismo
19.
Plants (Basel) ; 9(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859043

RESUMEN

Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.

20.
Plant Physiol ; 182(3): 1326-1345, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31826923

RESUMEN

The developmental program of seed formation, germination, and early seedling growth requires not only tight regulation of cell division and metabolism, but also concerted control of the structure and function of organelles, which relies on specific changes in their protein composition. Of particular interest is the switch from heterotrophic to photoautotrophic seedling growth, for which cytoplasmic lipid droplets (LDs) play a critical role as depots for energy-rich storage lipids. Here, we present the results of a bottom-up proteomics study analyzing the total protein fractions and LD-enriched fractions in eight different developmental phases during silique (seed) development, seed germination, and seedling establishment in Arabidopsis (Arabidopsis thaliana). The quantitative analysis of the LD proteome using LD-enrichment factors led to the identification of six previously unidentified and comparably low-abundance LD proteins, each of which was confirmed by intracellular localization studies with fluorescent protein fusions. In addition to these advances in LD protein discovery and the potential insights provided to as yet unexplored aspects in plant LD functions, our data set allowed for a comparative analysis of the LD protein composition throughout the various developmental phases examined. Among the most notable of the alterations in the LD proteome were those during seedling establishment, indicating a switch in the physiological function(s) of LDs after greening of the cotyledons. This work highlights LDs as dynamic organelles with functions beyond lipid storage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Gotas Lipídicas/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Germinación/genética , Germinación/fisiología , Proteínas Asociadas a Gotas Lipídicas/genética , Proteoma/genética , Proteoma/metabolismo , Plantones/genética , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...