Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 632(Pt A): 65-73, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410295

RESUMEN

HYPOTHESIS: Spinodal dewetting is one of the basic processes inducing a spontaneous withdrawal of a liquid from a substrate surface. In the accepted theory, thickness fluctuations generated by thermally activated capillary waves are amplified by the competing actions of surface tension and disjoining pressure. Ubiquitous sub-nanometric substrate roughness also produces thickness fluctuations and may play a role analogous but even more efficient in seeding the process. MODELLING: Analytic calculations valid at the early linear stage of the process and simulations extending the study to its whole non-linear development have been performed to compare features and the relative relevance of the two seeding mechanisms. FINDINGS: Calculations and simulations have shown that substrate roughness can replace capillary waves in seeding spinodal dewetting. A typically larger amplitude and a steady nature compared to the transitory one of capillary waves allow us to conclude that, contrary to the common view, substrate roughness is the prevailing seed of the spinodal instability. The consequence of our statement is that spinodal dewetting loses most of its stochastic nature and becomes, in principle, a process that can be tuned by engineering substrate roughness.


Asunto(s)
Semillas , Tensión Superficial
2.
Nano Lett ; 18(8): 4871-4877, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29924621

RESUMEN

Electric control of magnetism is a prerequisite for efficient and low-power spintronic devices. More specifically, in heavy metal-ferromagnet-insulator heterostructures, voltage gating has been shown to locally and dynamically tune magnetic properties such as interface anisotropy and saturation magnetization. However, its effect on interfacial Dzyaloshinskii-Moriya Interaction (DMI), which is crucial for the stability of magnetic skyrmions, has been challenging to achieve and has not been reported yet for ultrathin films. Here, we demonstrate a 130% variation of DMI with electric field in Ta/FeCoB/TaO x trilayer through Brillouin Light Spectroscopy (BLS). Using polar magneto-optical Kerr-effect microscopy, we further show a monotonic variation of DMI and skyrmionic bubble size with electric field with an unprecedented efficiency. We anticipate through our observations that a sign reversal of DMI with an electric field is possible, leading to a chirality switch. This dynamic manipulation of DMI establishes an additional degree of control to engineer programmable skyrmion-based memory or logic devices.

3.
Nano Lett ; 17(5): 3006-3012, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28437086

RESUMEN

Nanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that are either energy consuming or difficult to integrate. Here we demonstrate the control of skyrmion bubbles nucleation and annihilation using electric field gating, an easily integrable and potentially energetically efficient solution. We present a detailed stability diagram of the skyrmion bubbles in a Pt/Co/oxide trilayer and show that their stability can be controlled via an applied electric field. An analytical bubble model with the Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy accounts for the observed electrical skyrmion switching effect. This allows us to unveil the origin of the electrical control of skyrmions stability and to show that both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction play an important role in the skyrmion bubble stabilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...