Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38902165

RESUMEN

Accelerating rates of climate change have intensified research on thermal adaptation. Increasing temperature fluctuations, a prominent feature of climate change, means that the persistence of many species depends on both heat and cold tolerance across the entire life cycle. In endotherms, research has focused on specific life stages, with changes in thermoregulation across life rarely being examined. Consequently, there is a need to (i) analyse how heat and cold tolerance mechanisms coevolve, and (ii) test whether antagonistic effects between heat and cold tolerance across different life stages limit thermal adaptation. Information on genes influencing heat and cold tolerance and how they are expressed through life will enable more accurate modelling of species vulnerabilities to future climatic volatility.

2.
Evol Lett ; 8(2): 200-211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525029

RESUMEN

Organisms inhabiting extreme thermal environments, such as desert birds, have evolved spectacular adaptations to thermoregulate during hot and cold conditions. However, our knowledge of selection for thermoregulation and the potential for evolutionary responses is limited, particularly for large organisms experiencing extreme temperature fluctuations. Here we use thermal imaging to quantify selection and genetic variation in thermoregulation in ostriches (Struthio camelus), the world's largest bird species that is experiencing increasingly volatile temperatures. We found that females who are better at regulating their head temperatures ("thermoregulatory capacity") had higher egg-laying rates under hotter conditions. Thermoregulatory capacity was both heritable and showed signatures of local adaptation: females originating from more unpredictable climates were better at regulating their head temperatures in response to temperature fluctuations. Together these results reveal that past and present evolutionary processes have shaped genetic variation in thermoregulatory capacity, which appears to protect critical organs, such as the brain, from extreme temperatures during reproduction.

3.
PLoS Genet ; 19(6): e1010801, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37390104

RESUMEN

Sex chromosomes have evolved repeatedly across the tree of life and often exhibit extreme size dimorphism due to genetic degeneration of the sex-limited chromosome (e.g. the W chromosome of some birds and Y chromosome of mammals). However, in some lineages, ancient sex-limited chromosomes have escaped degeneration. Here, we study the evolutionary maintenance of sex chromosomes in the ostrich (Struthio camelus), where the W remains 65% the size of the Z chromosome, despite being more than 100 million years old. Using genome-wide resequencing data, we show that the population scaled recombination rate of the pseudoautosomal region (PAR) is higher than similar sized autosomes and is correlated with pedigree-based recombination rate in the heterogametic females, but not homogametic males. Genetic variation within the sex-linked region (SLR) (π = 0.001) was significantly lower than in the PAR, consistent with recombination cessation. Conversely, genetic variation across the PAR (π = 0.0016) was similar to that of autosomes and dependent on local recombination rates, GC content and to a lesser extent, gene density. In particular, the region close to the SLR was as genetically diverse as autosomes, likely due to high recombination rates around the PAR boundary restricting genetic linkage with the SLR to only ~50Kb. The potential for alleles with antagonistic fitness effects in males and females to drive chromosome degeneration is therefore limited. While some regions of the PAR had divergent male-female allele frequencies, suggestive of sexually antagonistic alleles, coalescent simulations showed this was broadly consistent with neutral genetic processes. Our results indicate that the degeneration of the large and ancient sex chromosomes of the ostrich may have been slowed by high recombination in the female PAR, reducing the scope for the accumulation of sexually antagonistic variation to generate selection for recombination cessation.


Asunto(s)
Struthioniformes , Masculino , Animales , Femenino , Struthioniformes/genética , Evolución Molecular , Recombinación Genética , Cromosomas Sexuales/genética , Evolución Biológica , Mamíferos/genética
4.
Elife ; 112022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193678

RESUMEN

Cooperative breeding allows the costs of parental care to be shared, but as groups become larger, such benefits often decline as competition increases and group cohesion breaks down. The counteracting forces of cooperation and competition are predicted to select for an optimal group size, but variation in groups is ubiquitous across cooperative breeding animals. Here, we experimentally test if group sizes vary because of sex differences in the costs and benefits of cooperative breeding in captive ostriches, Struthio camelus, and compare this to the distribution of group sizes in the wild. We established 96 groups with different numbers of males (1 or 3) and females (1, 3, 4, or 6) and manipulated opportunities for cooperation over incubation. There was a clear optimal group size for males (one male with four or more females) that was explained by high costs of competition and negligible benefits of cooperation. Conversely, female reproductive success was maximised across a range of group sizes due to the benefits of cooperation with male and female group members. Reproductive success in intermediate sized groups was low for both males and females due to sexual conflict over the timing of mating and incubation. Our experiments show that sex differences in cooperation and competition can explain group size variation in cooperative breeders.


Being a parent is hard work. The unrelenting demand for food and protection is exhausting. Now imagine being a parent on the hot African savannah. Food and water are scarce, and whenever you leave your offspring, they overheat, or something eats them. This is the reality for ostriches. They, like humans, cope with the challenges of parenthood by sharing childcare responsibilities. Ostriches live in groups, breed in a communal nest, and take it in turns to incubate their eggs. This helps to maximize the survival of their offspring, but it has its downsides. The bigger a group gets, the more its members have to compete over mates and space for their eggs in the nest. The balance between cooperation and competition should, in theory, result in one 'optimal' group size. But this pattern does not seem to hold true: in the wild, ostrich families vary wildly in size and composition. To find out why, Melgar et al. set up dozens of groups of breeding ostriches and gave them different opportunities to cooperate. For males, there was one group size that maximized the number of offspring they produced (reproductive success): a single male with four or more females. Males did not benefit much from cooperation, and suffered greatly from competing with other males for mates. For females, however, the story was different. They benefited much more than males from cooperation and did best in bigger groups where they could share egg care with other individuals. Middle-sized groups were not good for either sex because reproduction was hard to coordinate: males continued to pursue copulations after females had initiated incubation, resulting in eggs being exposed and broken. The different priorities of males and females explain why there is no single optimal group size for ostriches. How groups balance competition and cooperation is a fundamental question in biology. Why do some organisms prefer to live alone, while others thrive in large groups? Understanding more about the balance of priorities within a group could hold the answers. It could also help to inform conservation work and animal breeding by showing how different social pressures influence breeding success.


Asunto(s)
Struthioniformes , Animales , Femenino , Masculino , Reproducción , Caracteres Sexuales , Conducta Sexual Animal
5.
Sci Adv ; 8(21): eabn9580, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622916

RESUMEN

The evolutionary potential of species to cope with short-term temperature fluctuations during reproduction is critical to predicting responses to future climate change. Despite this, vertebrate research has focused on reproduction under high or low temperatures in relatively stable temperate climates. Here, we characterize the genetic basis of reproductive thermal tolerance to temperature fluctuations in the ostrich, which lives in variable environments in tropical and subtropical Africa. Both heat and cold tolerance were under selection and heritable, indicating the potential for evolutionary responses to mean temperature change. However, we found evidence for a negative, genetic correlation between heat and cold tolerance that should limit the potential for adaptation to fluctuating temperatures. Genetic constraints between heat and cold tolerance appear a crucial, yet underappreciated, factor influencing responses to climate change.

6.
Sci Rep ; 11(1): 18850, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552121

RESUMEN

Experiments manipulating the nutritional environment and the associated microbiome of animals have demonstrated their importance for key fitness components. However, there is little information on how macronutrient composition and bacterial communities in natural food sources vary across seasons in nature and on how these factors affect the fitness components of insects. In this study, diet samples from an orchard compost heap, which is a natural habitat for many Drosophila species and other arthropods, were collected over 9 months covering all seasons in a temperate climate. We developed D. melanogaster on diet samples and investigated stress resistance and life-history traits as well as the microbial community of flies and compost. Nutrient and microbial community analysis of the diet samples showed marked differences in macronutrient composition and microbial community across seasons. However, except for the duration of development on these diet samples and Critical Thermal maximum, fly stress resistance and life-history traits were unaffected. The resulting differences in the fly microbial community were also more stable and less diverse than the microbial community of the diet samples. Our study suggests that when D. melanogaster are exposed to a vastly varying nutritional environment with a rich, diverse microbial community, the detrimental consequences of an unfavourable macronutrient composition are offset by the complex interactions between microbes and nutrients.


Asunto(s)
Drosophila melanogaster/fisiología , Animales , Dieta , Drosophila melanogaster/microbiología , Ingestión de Alimentos/fisiología , Microbiología Ambiental , Microbiota/fisiología , Nutrientes/provisión & distribución , Estaciones del Año
7.
Mol Biol Evol ; 38(12): 5782-5805, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34469576

RESUMEN

Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.


Asunto(s)
Drosophila melanogaster , Metagenómica , Animales , Drosophila melanogaster/genética , Frecuencia de los Genes , Genética de Población , Genómica
8.
Nat Commun ; 12(1): 666, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531493

RESUMEN

Temperature has a crucial influence on the places where species can survive and reproduce. Past research has primarily focused on survival, making it unclear if temperature fluctuations constrain reproductive success, and if so whether populations harbour the potential to respond to climatic shifts. Here, using two decades of data from a large experimental breeding programme of the iconic ostrich (Struthio camelus) in South Africa, we show that the number of eggs females laid and the number of sperm males produced were highly sensitive to natural temperature extremes (ranging from -5 °C to 45 °C). This resulted in reductions in reproductive success of up to 44% with 5 °C deviations from their thermal optimum. In contrast, gamete quality was largely unaffected by temperature. Extreme temperatures also did not expose trade-offs between gametic traits. Instead, some females appeared to invest more in reproducing at high temperatures, which may facilitate responses to climate change. These results show that the robustness of fertility to temperature fluctuations, and not just temperature increases, is a critical aspect of species persistence in regions predicted to undergo the greatest change in climate volatility.


Asunto(s)
Fertilidad/fisiología , Temperatura , Animales , Femenino , Calor , Masculino , Sudáfrica , Espermatozoides/fisiología
9.
Front Genet ; 11: 555843, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193631

RESUMEN

Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.

10.
Evol Appl ; 13(5): 1090-1102, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32431754

RESUMEN

The variance in phenotypic trait values is a product of environmental and genetic variation. The sensitivity of traits to environmental variation has a genetic component and is likely to be under selection. However, there are few studies investigating the evolution of this sensitivity, in part due to the challenges of estimating the environmental variance. The livestock literature provides a wealth of studies that accurately partition components of phenotypic variance, including the environmental variance, in well-defined environments. These studies involve breeds that have been under strong selection on mean phenotype in optimal environments for many generations, and therefore represent an opportunity to study the potential evolution of trait sensitivity to environmental conditions. Here, we use literature on domestic cattle to examine the evolution of micro-environmental variance (CVR-the coefficient of residual variance) by testing for differences in expression of CVR in animals from the same breed reared in different environments. Traits that have been under strong selection did not follow a null expectation of an increase in CVR in heterogenous environments (e.g., grazing), a pattern that may reflect evolution of increased uniformity in heterogeneous environments. When comparing CVR across environments of different levels of optimality, here measured by trait mean, we found a reduction in CVR in the more optimal environments for both life history and growth traits. Selection aimed at increasing trait means in livestock breeds typically occurs in the more optimal environments, and we therefore suspect that the decreased CVR is a consequence of evolution of the expression of micro-environmental variance in this environment. Our results highlight the heterogeneity in micro-environmental variance across environments and point to possible connections to the intensity of selection on trait means.

11.
Dev Genes Evol ; 230(2): 173-184, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31768622

RESUMEN

One of the benefits of cooperative hunting may be that predators can subdue larger prey. In spiders, cooperative, social species can capture prey many times larger than an individual predator. However, we propose that cooperative prey capture does not have to be associated with larger caught prey per se, but with an increase in the ratio of prey to predator body size. This can be achieved either by catching larger prey while keeping predator body size constant, or by evolving a smaller predator body size while maintaining capture of large prey. We show that within a genus of relatively large spiders, Stegodyphus, subsocial spiders representing the ancestral state of social species are capable of catching the largest prey available in the environment. Hence, within this genus, the evolution of cooperation would not provide access to otherwise inaccessible, large prey. Instead, we show that social Stegodyphus spiders are smaller than their subsocial counterparts, while catching similar sized prey, leading to the predicted increase in prey-predator size ratio with sociality. We further show that in a genus of small spiders, Anelosimus, the level of sociality is associated with an increased size of prey caught while predator size is unaffected by sociality, leading to a similar, predicted increase in prey-predator size ratio. In summary, we find support for our proposed 'prey to predator size ratio hypothesis' and discuss how relaxed selection on large body size in the evolution of social, cooperative living may provide adaptive benefits for ancestrally relatively large predators.


Asunto(s)
Conducta Animal , Tamaño Corporal , Animales , Conducta Animal/fisiología , Evolución Biológica , Correlación de Datos , Filogenia , Conducta Predatoria , Conducta Social , Arañas
12.
J Insect Physiol ; 118: 103940, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31493390

RESUMEN

Insects are known to selectively balance their intake of protein and carbohydrate to optimize reproduction and survival. For insects who feed on decomposing fruit, fluctuations in macronutrient composition occur as fruits ripe and decomposition progresses which may challenge optimal resource allocation. Using Drosophila melanogaster, we tested the effect of macronutrient fluctuations and the variability of these fluctuations on starvation resistance and components of reproductive output; traits known to be sensitive to different protein to carbohydrate (P:C) ratios in the diet. For 8 days, flies were fed the same protein to carbohydrate (P:C) ratio (constant feeding), or fed diets with fluctuations in P:C ratio on each day; these fluctuations being regular (predictably fluctuating) or irregular (unpredictably fluctuating). The three feeding regimes yielded the same average P:C ratio across the duration of the experiment. We found no difference in starvation resistance across the feeding regimes. Interestingly, there was a sexual dimorphism in the effect on reproductive output with males performing worst in the unpredictable feeding regime, and with no effect of feeding regime on female performance. Our study provides evidence for means of adapting to fluctuating macronutrient composition and suggests females are more tactful than males in storing and allocating resources for reproduction.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Drosophila melanogaster/fisiología , Animales , Carbohidratos de la Dieta , Proteínas en la Dieta , Femenino , Fertilidad/fisiología , Masculino , Factores Sexuales , Inanición/fisiopatología
13.
Evolution ; 73(8): 1672-1678, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31144765

RESUMEN

Genetic correlations for a trait across environments are predicted to decrease as environments diverge. However, estimates of genetic correlations from natural populations are typically defined across a limited environmental range and prone to very large standard errors, making it difficult to test this prediction. We address the importance of environmental distance on genetic correlations by employing data from domestic cattle in which abundant and accurate estimates are available from a wide range of environments. Three production traits related to milk yield show a clear decrease in genetic correlations with increasing environmental divergence. This pattern was also evident for growth traits and other yield traits but not for traits related to reproduction, morphology, physiology, or disease. We suspect that this reflects weaker selection on these latter trait classes compared to production traits, or alternatively the effects of selection are constrained by unfavorable genetic correlations between traits. The results support the notion that traits that historically have been under strong directional selection in a small range of frequently encountered environments will evolve high genetic correlations across these environments, while exposure to uncommon (and dissimilar) environments lead to a reranking of gene effects and a decrease in genetic correlations across environments.


Asunto(s)
Bovinos/genética , Ambiente , Rasgos de la Historia de Vida , Leche/metabolismo , Crianza de Animales Domésticos , Animales , Bovinos/metabolismo , Selección Genética
14.
Mol Ecol ; 28(3): 600-614, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30375065

RESUMEN

Abiotic environmental factors play a fundamental role in determining the distribution, abundance and adaptive diversification of species. Empowered by new technologies enabling rapid and increasingly accurate examination of genomic variation in populations, researchers may gain new insights into the genomic background of adaptive radiation and stress resistance. We investigated genomic variation across generations of large-scale experimental selection regimes originating from a single founder population of Drosophila melanogaster, diverging in response to ecologically relevant environmental stressors: heat shock, heat knock down, cold shock, desiccation and starvation. When compared to the founder population, and to parallel unselected controls, there were more than 100,000 single nucleotide polymorphisms (SNPs) displaying consistent allelic changes in response to selective pressures across generations. These SNPs were found in both coding and noncoding sequences, with the highest density in promoter regions, and involved a broad range of functionalities, including molecular chaperoning by heat-shock proteins. The SNP patterns were highly stressor-specific despite considerable variation among line replicates within each selection regime, as reflected by a principal component analysis, and co-occurred with selective sweep regions. Only ~15% of SNPs with putatively adaptive changes were shared by at least two selective regimes, while less than 1% of SNPs diverged in opposite directions. Divergent stressors driving evolution in the experimental system of adaptive radiation left distinct genomic signatures, most pronounced in starvation and heat-shock selection regimes.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Genética de Población , Selección Genética , Alelos , Animales , Elementos Transponibles de ADN , Genoma de los Insectos , Genotipo , Haplotipos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Estrés Fisiológico
15.
Evolution ; 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738620

RESUMEN

Inbreeding depression is often intensified under environmental stress (i.e., inbreeding-stress interaction). Although the fitness consequences of this phenomenon are well-described, underlying mechanisms such as an increased expression of deleterious alleles under stress, or a lower capacity for adaptive responses to stress with inbreeding, have rarely been investigated. We investigated a fitness component (egg-to-adult viability) and gene-expression patterns using RNA-seq analyses in noninbred control lines and in inbred lines of Drosophila melanogaster exposed to benign temperature or heat stress. We find little support for an increase in the cumulative expression of deleterious alleles under stress. Instead, inbred individuals had a reduced ability to induce an adaptive gene regulatory stress response compared to controls. The decrease in egg-to-adult viability due to stress was most pronounced in the lines with the largest deviation in the adaptive stress response (R2 = 0.48). Thus, we find strong evidence for a lower capacity of inbred individuals to respond by gene regulation to stress and that this is the main driver of inbreeding-stress interactions. In comparison, the altered gene expression due to inbreeding at benign temperature showed no correlation with fitness and was pronounced in genomic regions experiencing the highest increase in homozygosity.

16.
J Exp Biol ; 221(Pt 9)2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29666197

RESUMEN

Rather than maximizing intake of available macronutrients, insects increase intake of some nutrients and restrict intake of others. This selective consumption influences, and potentially optimizes, developmental time, reproduction and lifespan of the organism. Studies so far have focused on discriminating between protein and carbohydrate uptake and the consequences on fitness components at different life stages. However, it is largely unknown whether and how the developmental diets, which may entail habitat-specific nutrient restrictions, affect selective consumption in adults. We show that adult female D. melanogaster opt for the same protein to carbohydrate (P:C) ratio regardless of their developmental diet (P:C ratio of 1:1, 1:4 or 1:8). In contrast, males choose a diet that makes up for deficiencies; when protein is low during development, males increase protein consumption despite this being detrimental to starvation resistance. The sexual dimorphism in foraging choice could be due to the different energetic requirements of males and females. To investigate the effect of developmental diet on lifespan once an adult nutritional environment has been established, we also conducted a no-choice experiment. Here, adult lifespan increased as P:C ratio decreased, irrespective of developmental diet, thus demonstrating a 'cancelling out' effect of the nutritional environment experienced during early life stages. Our study provides novel insights into how developmental diet is linked to adult diet by presenting evidence for sexual dimorphism in foraging choice as well as life-stage dependency of diet on lifespan.


Asunto(s)
Dieta , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Drosophila melanogaster/fisiología , Animales , Conducta de Elección , Drosophila melanogaster/crecimiento & desarrollo , Conducta Alimentaria , Femenino , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino
17.
Mol Ecol ; 26(23): 6510-6523, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28746770

RESUMEN

The effective population size (Ne ) is a central factor in determining maintenance of genetic variation. The neutral theory predicts that loss of variation depends on Ne , with less genetic drift in larger populations. We monitored genetic drift in 42 Drosophila melanogaster populations of different adult census population sizes (10, 50 or 500) using pooled RAD sequencing. In small populations, variation was lost at a substantially lower rate than expected. This observation was consistent across two ecological relevant thermal regimes, one stable and one with a stressful increase in temperature across generations. Estimated ratios between Ne and adult census size were consistently higher in small than in larger populations. The finding provides evidence for a slower than expected loss of genetic diversity and consequently a higher than expected long-term evolutionary potential in small fragmented populations. More genetic diversity was retained in areas of low recombination, suggesting that associative overdominance, driven by disfavoured homozygosity of recessive deleterious alleles, is responsible for the maintenance of genetic diversity in smaller populations. Consistent with this hypothesis, the X-chromosome, which is largely free of recessive deleterious alleles due to hemizygosity in males, fits neutral expectations even in small populations. Our experiments provide experimental answers to a range of unexpected patterns in natural populations, ranging from variable diversity on X-chromosomes and autosomes to surprisingly high levels of nucleotide diversity in small populations.


Asunto(s)
Drosophila melanogaster/genética , Variación Genética , Genética de Población , Animales , Evolución Molecular , Femenino , Flujo Genético , Aptitud Genética , Masculino , Modelos Genéticos , Densidad de Población , Temperatura , Cromosoma X/genética
18.
Evolution ; 71(6): 1627-1642, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28369831

RESUMEN

Mechanistic trade-offs between traits under selection can shape and constrain evolutionary adaptation to environmental stressors. However, our knowledge of the quantitative and qualitative overlap in the molecular machinery among stress tolerance traits is highly restricted by the challenges of comparing and interpreting data between separate studies and laboratories, as well as to extrapolating between different levels of biological organization. We investigated the expression of the constitutive proteome (833 proteins) of 35 Drosophila melanogaster replicate populations artificially selected for increased resistance to six different environmental stressors. The evolved proteomes were significantly differentiated from replicated control lines. A targeted analysis of the constitutive proteomes revealed a regime-specific selection response among heat-shock proteins, which provides evidence that selection also adjusts the constitutive expression of these molecular chaperones. Although the selection response in some proteins was regime specific, the results were dominated by evidence for a "common stress response." With the exception of high temperature survival, we found no evidence for negative correlations between environmental stress resistance traits, meaning that evolutionary adaptation is not constrained by mechanistic trade-offs in regulation of functional important proteins. Instead, standing genetic variation and genetic trade-offs outside regulatory domains likely constrain the evolutionary responses in natural populations.


Asunto(s)
Adaptación Fisiológica , Proteómica , Selección Genética , Aclimatación , Animales , Drosophila melanogaster/genética
19.
BMC Genomics ; 18(1): 84, 2017 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-28088192

RESUMEN

BACKGROUND: Evolutionary theory predicts that antagonistically selected alleles, such as those with divergent pleiotropic effects in early and late life, may often reach intermediate population frequencies due to balancing selection, an elusive process when sought out empirically. Alternatively, genetic diversity may increase as a result of positive frequency-dependent selection and genetic purging in bottlenecked populations. RESULTS: While experimental evolution systems with directional phenotypic selection typically result in at least local heterozygosity loss, we report that selection for increased lifespan in Drosophila melanogaster leads to an extensive genome-wide increase of nucleotide diversity in the selected lines compared to replicate control lines, pronounced in regions with no or low recombination, such as chromosome 4 and centromere neighborhoods. These changes, particularly in coding sequences, are most consistent with the operation of balancing selection and the antagonistic pleiotropy theory of aging and life history traits that tend to be intercorrelated. Genes involved in antioxidant defenses, along with multiple lncRNAs, were among those most affected by balancing selection. Despite the overwhelming genetic diversification and the paucity of selective sweep regions, two genes with functions important for central nervous system and memory, Ptp10D and Ank2, evolved under positive selection in the longevity lines. CONCLUSIONS: Overall, the 'evolve-and-resequence' experimental approach proves successful in providing unique insights into the complex evolutionary dynamics of genomic regions responsible for longevity.


Asunto(s)
Drosophila melanogaster/genética , Variación Genética , Genoma de los Insectos , Genómica , Longevidad/genética , Alelos , Animales , Frecuencia de los Genes , Genómica/métodos , Heterocigoto , Polimorfismo de Nucleótido Simple
20.
Am J Physiol Regul Integr Comp Physiol ; 312(2): R211-R222, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27927623

RESUMEN

The ability of ectotherms to respond to changes in their thermal environment through plastic mechanisms is central to their adaptive capability. However, we still lack knowledge on the physiological and functional responses by which ectotherms acclimate to temperatures during development, and in particular, how physiological stress at extreme temperatures may counteract beneficial acclimation responses at benign temperatures. We exposed Drosophila melanogaster to 10 developmental temperatures covering their entire permissible temperature range. We obtained metabolic profiles and reaction norms for several functional traits: egg-to-adult viability, developmental time, and heat and cold tolerance. Females were more heat tolerant than males, whereas no sexual dimorphism was found in cold tolerance. A group of metabolites, mainly free amino acids, had linear reaction norms. Several energy-carrying molecules, as well as some sugars, showed distinct inverted U-shaped norms of reaction across the thermal range, resulting in a positive correlation between metabolite intensities and egg-to-adult viability. At extreme temperatures, low levels of these metabolites were interpreted as a response characteristic of costs of homeostatic perturbations. Our results provide novel insights into a range of metabolites reported to be central for the acclimation response and suggest several new candidate metabolites. Low and high temperatures result in different adaptive physiological responses, but they also have commonalities likely to be a result of the failure to compensate for the physiological stress. We suggest that the regulation of metabolites that are tightly connected to the performance curve is important for the ability of ectotherms to cope with variation in temperature.


Asunto(s)
Envejecimiento/fisiología , Regulación de la Temperatura Corporal/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Respuesta al Choque Térmico/fisiología , Termotolerancia/fisiología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Metaboloma/fisiología , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...