Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5192, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890288

RESUMEN

Constraining the relationship between temperature and atmospheric concentrations of carbon dioxide (pCO2) is essential to model near-future climate. Here, we reconstruct pCO2 values over the past 15 million years (Myr), providing a series of analogues for possible near-future temperatures and pCO2, from a single continuous site (DSDP Site 467, California coast). We reconstruct pCO2 values using sterane and phytane, compounds that many phytoplankton produce and then become fossilised in sediment. From 15.0-0.3 Myr ago, our reconstructed pCO2 values steadily decline from 650 ± 150 to 280 ± 75 ppmv, mirroring global temperature decline. Using our new range of pCO2 values, we calculate average Earth system sensitivity and equilibrium climate sensitivity, resulting in 13.9 °C and 7.2 °C per doubling of pCO2, respectively. These values are significantly higher than IPCC global warming estimations, consistent or higher than some recent state-of-the-art climate models, and consistent with other proxy-based estimates.

2.
J Am Soc Mass Spectrom ; 34(4): 525-537, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36971362

RESUMEN

For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.

3.
Nat Commun ; 14(1): 666, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750723

RESUMEN

Conjugation is a major mechanism of horizontal gene transfer promoting the spread of antibiotic resistance among human pathogens. It involves establishing a junction between a donor and a recipient cell via an extracellular appendage known as the mating pilus. In bacteria, the conjugation machinery is encoded by plasmids or transposons and typically mediates the transfer of cognate mobile genetic elements. Much less is known about conjugation in archaea. Here, we determine atomic structures by cryo-electron microscopy of three conjugative pili, two from hyperthermophilic archaea (Aeropyrum pernix and Pyrobaculum calidifontis) and one encoded by the Ti plasmid of the bacterium Agrobacterium tumefaciens, and show that the archaeal pili are homologous to bacterial mating pili. However, the archaeal conjugation machinery, known as Ced, has been 'domesticated', that is, the genes for the conjugation machinery are encoded on the chromosome rather than on mobile genetic elements, and mediates the transfer of cellular DNA.


Asunto(s)
Aeropyrum , Agrobacterium tumefaciens , Conjugación Genética , ADN de Archaea , Pyrobaculum , Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , ADN de Archaea/genética , ADN Bacteriano/genética , Transferencia de Gen Horizontal , Plásmidos , Aeropyrum/genética , Pyrobaculum/genética
4.
Cell ; 185(8): 1297-1307.e11, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35325592

RESUMEN

Spindle- or lemon-shaped viruses infect archaea in diverse environments. Due to the highly pleomorphic nature of these virions, which can be found with cylindrical tails emanating from the spindle-shaped body, structural studies of these capsids have been challenging. We have determined the atomic structure of the capsid of Sulfolobus monocaudavirus 1, a virus that infects hosts living in nearly boiling acid. A highly hydrophobic protein, likely integrated into the host membrane before the virions assemble, forms 7 strands that slide past each other in both the tails and the spindle body. We observe the discrete steps that occur as the tail tubes expand, and these are due to highly conserved quasiequivalent interactions with neighboring subunits maintained despite significant diameter changes. Our results show how helical assemblies can vary their diameters, becoming nearly spherical to package a larger genome and suggest how all spindle-shaped viruses have evolved from archaeal rod-like viruses.


Asunto(s)
Virus de Archaea , Virus de Archaea/química , Virus de Archaea/genética , Virus de Archaea/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Genoma Viral , Virión/metabolismo
5.
R Soc Open Sci ; 8(12): 210949, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34909214

RESUMEN

Baleen from mysticete whales is a well-preserved proteinaceous material that can be used to identify migrations and feeding habits for species whose migration pathways are unknown. Analysis of δ13C and δ15N values from bulk baleen have been used to infer migration patterns for individuals. However, this approach has fallen short of identifying migrations between regions as it is difficult to determine variations in isotopic shifts without temporal sampling of prey items. Here, we apply analysis of δ15N values of amino acids to five baleen plates belonging to three species, revealing novel insights on trophic position, metabolic state and migration between regions. Humpback and minke whales had higher reconstructed trophic levels than fin whales (3.7-3.8 versus 3-3.2, respectively) as expected due to different feeding specialization. Isotopic niche areas between baleen minima and maxima were well separated, indicating regional resource use for individuals during migration that aligned with isotopic gradients in Atlantic Ocean particulate organic matter. Phenylanine δ15N values confirmed regional separation between the niche areas for two fin whales as migrations occurred and elevated glycine and threonine δ15N values suggested physiological changes due to fasting. Simultaneous resolution of trophic level and physiological changes allow for identification of regional migrations in mysticetes.

6.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341107

RESUMEN

The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus-host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus-host interactions, we studied the life cycle of the enveloped, ∼2-µm-long Sulfolobus islandicus filamentous virus (SIFV), a member of the family Lipothrixviridae infecting a hyperthermophilic and acidophilic archaeon Saccharolobus islandicus LAL14/1. Using dual-axis electron tomography and convolutional neural network analysis, we characterize the life cycle of SIFV and show that the virions, which are nearly two times longer than the host cell diameter, are assembled in the cell cytoplasm, forming twisted virion bundles organized on a nonperfect hexagonal lattice. Remarkably, our results indicate that envelopment of the helical nucleocapsids takes place inside the cell rather than by budding as in the case of most other known enveloped viruses. The mature virions are released from the cell through large (up to 220 nm in diameter), six-sided pyramidal portals, which are built from multiple copies of a single 89-amino-acid-long viral protein gp43. The overexpression of this protein in Escherichia coli leads to pyramid formation in the bacterial membrane. Collectively, our results provide insights into the assembly and release of enveloped filamentous viruses and illuminate the evolution of virus-host interactions in Archaea.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Lipothrixviridae/fisiología , Lipothrixviridae/patogenicidad , Sulfolobus/virología , Citoplasma/virología , Tomografía con Microscopio Electrónico , Escherichia coli/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/patogenicidad
7.
Front Microbiol ; 12: 659302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367080

RESUMEN

Lipids, as one of the main building blocks of cells, can provide valuable information on microorganisms in the environment. Traditionally, gas or liquid chromatography coupled to mass spectrometry (MS) has been used to analyze environmental lipids. The resulting spectra were then processed through individual peak identification and comparison with previously published mass spectra. Here, we present an untargeted analysis of MS1 spectral data generated by ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry of environmental microbial communities. Rather than attempting to relate each mass spectrum to a specific compound, we have treated each mass spectrum as a component, which can be clustered together with other components based on similarity in their abundance depth profiles through the water column. We present this untargeted data visualization method on lipids of suspended particles from the water column of the Black Sea, which included >14,000 components. These components form clusters that correspond with distinct microbial communities driven by the highly stratified water column. The clusters include both known and unknown compounds, predominantly lipids, demonstrating the value of this rapid approach to visualize component distributions and identify novel lipid biomarkers.

8.
Front Microbiol ; 12: 659315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322097

RESUMEN

Structurally diverse, specialized lipids are crucial components of microbial membranes and other organelles and play essential roles in ecological functioning. The detection of such lipids in the environment can reveal not only the occurrence of specific microbes but also the physicochemical conditions to which they are adapted to. Traditionally, liquid chromatography coupled with mass spectrometry allowed for the detection of lipids based on chromatographic separation and individual peak identification, resulting in a limited data acquisition and targeting of certain lipid groups. Here, we explored a comprehensive profiling of microbial lipids throughout the water column of a marine euxinic basin (Black Sea) using ultra high-pressure liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS). An information theory framework combined with molecular networking based on the similarity of the mass spectra of lipids enabled us to capture lipidomic diversity and specificity in the environment, identify novel lipids, differentiate microbial sources within a lipid group, and discover potential biomarkers for biogeochemical processes. The workflow presented here allows microbial ecologists and biogeochemists to process quickly and efficiently vast amounts of lipidome data to understand microbial lipids characteristics in ecosystems.

9.
Angew Chem Int Ed Engl ; 60(32): 17504-17513, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34114718

RESUMEN

Crenarchaeol is a glycerol dialkyl glycerol tetraether lipid produced exclusively in Archaea of the phylum Thaumarchaeota. This membrane-spanning lipid is undoubtedly the structurally most sophisticated of all known archaeal lipids and an iconic molecule in organic geochemistry. The 66-membered macrocycle possesses a unique chemical structure featuring 22 mostly remote stereocenters, and a cyclohexane ring connected by a single bond to a cyclopentane ring. Herein we report the first total synthesis of the proposed structure of crenarchaeol. Comparison with natural crenarchaeol allowed us to propose a revised structure of crenarchaeol, wherein one of the 22 stereocenters is inverted.

10.
Sci Data ; 7(1): 385, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177538

RESUMEN

The interocean transfer of thermocline water between the Indian and the Atlantic Oceans known as 'Agulhas leakage' is of global significance as it influences the Atlantic Meridional Overturning Circulation (AMOC) on different time scales. Variability in the Agulhas Current regime is key in shaping hydroclimate on the adjacent coastal areas of the African continent today as well as during past climates. However, the lack of long, continuous records from the proximal Agulhas Current region dating beyond the last glacial cycle prevents elucidation of its role in regional and wider global climate changes. This is the first continuous record of hydrographic variability (SST; δ18Osw) from the Agulhas Current core region spanning the past 270,000 years. The data set is analytical sound and provides a solid age model. As such, it can be used by paleoclimate scientists, archaeologists, and climate modelers to evaluate, for example, linkages between the Agulhas Current system and AMOC dynamics, as well as connections between ocean heat transport and Southern African climate change in the past and its impact on human evolution.

11.
Paleoceanogr Paleoclimatol ; 35(10): e2020PA003932, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33134852

RESUMEN

Several studies indicate that North Atlantic Deep Water (NADW) formation might have initiated during the globally warm Eocene (56-34 Ma). However, constraints on Eocene surface ocean conditions in source regions presently conducive to deep water formation are sparse. Here we test whether ocean conditions of the middle Eocene Labrador Sea might have allowed for deep water formation by applying (organic) geochemical and palynological techniques, on sediments from Ocean Drilling Program (ODP) Site 647. We reconstruct a long-term sea surface temperature (SST) drop from ~30°C to ~27°C between 41.5 to 38.5 Ma, based on TEX86. Superimposed on this trend, we record ~2°C warming in SST associated with the Middle Eocene Climatic Optimum (MECO; ~40 Ma), which is the northernmost MECO record as yet, and another, likely regional, warming phase at ~41.1 Ma, associated with low-latitude planktic foraminifera and dinoflagellate cyst incursions. Dinoflagellate cyst assemblages together with planktonic foraminiferal stable oxygen isotope ratios overall indicate low surface water salinities and strong stratification. Benthic foraminifer stable carbon and oxygen isotope ratios differ from global deep ocean values by 1-2‰ and 2-4‰, respectively, indicating geographic basin isolation. Our multiproxy reconstructions depict a consistent picture of relatively warm and fresh but also highly variable surface ocean conditions in the middle Eocene Labrador Sea. These conditions were unlikely conducive to deep water formation. This implies either NADW did not yet form during the middle Eocene or it formed in a different source region and subsequently bypassed the southern Labrador Sea.

12.
Sci Rep ; 10(1): 10508, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601284

RESUMEN

Understanding long-term trends in atmospheric concentrations of carbon dioxide (pCO2) has become increasingly relevant as modern concentrations surpass recent historic trends. One method for estimating past pCO2, the stable carbon isotopic fractionation associated with photosynthesis (Ɛp) has shown promise over the past several decades, in particular using species-specific biomarker lipids such as alkenones. Recently, the Ɛp of more general biomarker lipids, organic compounds derived from a multitude of species, have been applied to generate longer-spanning, more ubiquitous records than those of alkenones but the sensitivity of this proxy to changes in pCO2 has not been constrained in modern settings. Here, we test Ɛp using a variety of general biomarkers along a transect taken from a naturally occurring marine CO2 seep in Levante Bay of the Aeolian island of Vulcano in Italy. The studied general biomarkers, loliolide, cholesterol, and phytol, all show increasing depletion in 13C over the transect from the control site towards the seep, suggesting that CO2 exerts a strong control on isotopic fractionation in natural phytoplankton communities. The strongest shift in fractionation was seen in phytol, and pCO2 estimates derived from phytol confirm the utility of this biomarker as a proxy for pCO2 reconstruction.

13.
Rapid Commun Mass Spectrom ; 34(14): e8797, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32246866

RESUMEN

RATIONALE: There has been increased interest in the measurement of δ15 N values in amino acids (AAs) to gain simultaneous insight into both trophic relationships and the composition of biogeochemical sources used by producers at the base of the food web. A new combustion reactor design in gas chromatography/combustion isotope ratio mass spectrometry (GC/C-irMS) equipment has brought to light variable outcomes in performance, highlighting the need for better information about best practices for new systems. METHODS: Precision for δ15 N values in amino acids using the single combined oxidation-reduction reactor is improved across a sequence of analyses if the reactor is oxidized for a substantial period (2 h) and subsequently maintained throughout the sequence with 12-17 s seed oxidation before each run during GC/C-irMS. A five-point calibration curve using amino acids with a range of δ15 N values from -2.4‰ to +61.5‰ was used in combination with a 13-15 amino acid mixture to consistently normalize measurements to internationally calibrated reference materials. RESULTS: Combining this oxidation method with normalization techniques using both internal and external standards provided a reliable throughput of ~25 samples per week. It allowed for a reproducible level of precision of <±0.5‰, n = 10 within a derivatized standard mixture across each sequence and an average sample precision of ±0.27‰ n = 3, which is lower than the analytical precision typically associated with δ15 N values for amino acid analysis (<±1‰). CONCLUSIONS: A few practical considerations regarding oxidation and conditioning of the combustion reactor allow for increased sequence capacity with the single combined oxidation-reduction reactor. These considerations combined with normalization techniques result in a higher throughput and reduced analytical error during the measurement of δ15 N values in amino acids.


Asunto(s)
Aminoácidos/química , Isótopos de Nitrógeno/análisis , Animales , Cadena Alimentaria , Cromatografía de Gases y Espectrometría de Masas , Oxidación-Reducción
14.
Sci Total Environ ; 718: 137163, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32088473

RESUMEN

Posidonia oceanica (L.) Delile meadows are highly productive coastal marine ecosystems that provide multiple ecosystem services. The seagrass is not always the major contributor to total primary production, however, little is known about long-term changes in the composition of primary producers within seagrass meadows. Understanding compositional shifts within the community of primary producers is crucial to evaluate how climate and anthropogenic change affect the functioning of seagrass ecosystems. Here we analysed marker pigment composition in seagrass cores from two bays of the Cabrera Island (Balearic Islands, Spain) to asses long-term changes in phototrophic community composition and production in seagrass meadows, and identify the environmental factors triggering those changes. The proxy dataset was explored using principal component analyses (PCA): one including the pigment dataset to look for associations between producers' groups, and another one combining the pigment dataset with plausible local and global regulatory factors to assess the environmental drivers of change. Analyses of characteristic pigments and morphological fossils (cysts) showed that the abundance of dinoflagellates increased over the last 150-300 years, coeval with a rise in solar irradiance and air temperature. When compared among embayments, pigments from cyanobacteria predominated in seagrass meadows located at Es Port, a sheltered bay receiving higher terrestrial runoff; whereas pigments from diatoms, seagrasses and rodophytes were more common at Santa Maria, an exposed bay with clearer waters. Water depth also played a role in controlling the phototrophic community composition, with greater abundance of diatoms in the shallowest waters (<5 m). Overall, our results suggested that historical and spatial variation in seagrass meadows' phototrophic community composition was influenced by the interaction between local factors (catchment-bay characteristics) and global climate processes (energy influx). Together these patterns forecast how marine primary producers and seagrass ecosystem structure may respond to future global warming.


Asunto(s)
Alismatales , Ecosistema , Clima , España , Factores de Tiempo
15.
Sci Rep ; 10(1): 294, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941956

RESUMEN

The marine pelagic archaeal community is dominated by three major groups, the marine group I (MGI) Thaumarchaeota, and the marine groups II and III (MGII and MGIII) Euryarchaeota. Studies of both MGI cultures and the environment have shown that the MGI core membrane lipids are predominantly composed of glycerol dibiphytanyl glycerol tetraether (GDGT) lipids and the diether lipid archaeol. However, there are no cultured representatives of MGII and III archaea and, therefore, both their membrane lipid composition and potential contribution to the marine archaeal lipid pool remain unknown. Here, we show that GDGTs present in suspended particulate matter of the (sub)surface waters of the North Atlantic Ocean and the coastal North Sea are derived from MGI archaea, and that MGII archaea do not significantly contribute to the pool of GDGTs and archaeol. This implies, in contrast to previous suggestions, that their lipids do not affect the widely used sea surface temperature proxy TEX86. These findings also indicate that MGII archaea are not able to produce any known archaeal lipids, implying that our understanding of the evolution of membrane lipid biosynthesis in Archaea is far from complete.


Asunto(s)
Archaea/metabolismo , Lípidos/biosíntesis , Archaea/clasificación , Archaea/genética , Océano Atlántico , Cromatografía Líquida de Alta Presión , Euryarchaeota/clasificación , Euryarchaeota/genética , Euryarchaeota/metabolismo , Éteres de Glicerilo/análisis , Éteres de Glicerilo/metabolismo , Lípidos/análisis , Lípidos/aislamiento & purificación , Espectrometría de Masas , Filogenia , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Extracción en Fase Sólida
16.
Proc Natl Acad Sci U S A ; 116(45): 22591-22597, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636205

RESUMEN

Studies on viruses infecting archaea living in the most extreme environments continue to show a remarkable diversity of structures, suggesting that the sampling continues to be very sparse. We have used electron cryo-microscopy to study at 3.7-Å resolution the structure of the Sulfolobus polyhedral virus 1 (SPV1), which was originally isolated from a hot, acidic spring in Beppu, Japan. The 2 capsid proteins with variant single jelly-roll folds form pentamers and hexamers which assemble into a T = 43 icosahedral shell. In contrast to tailed icosahedral double-stranded DNA (dsDNA) viruses infecting bacteria and archaea, and herpesviruses infecting animals and humans, where naked DNA is packed under very high pressure due to the repulsion between adjacent layers of DNA, the circular dsDNA in SPV1 is fully covered with a viral protein forming a nucleoprotein filament with attractive interactions between layers. Most strikingly, we have been able to show that the DNA is in an A-form, as it is in the filamentous viruses infecting hyperthermophilic acidophiles. Previous studies have suggested that DNA is in the B-form in bacteriophages, and our study is a direct visualization of the structure of DNA in an icosahedral virus.


Asunto(s)
Virus de Archaea/fisiología , Virus ADN/fisiología , ADN de Forma A/genética , ADN Viral/genética , Ensamble de Virus , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Virus ADN/genética , Virus ADN/ultraestructura , ADN de Forma A/metabolismo , ADN Viral/metabolismo , Sulfolobus/virología
17.
PLoS One ; 14(9): e0222011, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31525210

RESUMEN

Fire regime shifts are driven by climate and natural vegetation changes, but can be strongly affected by human land management. Yet, it is poorly known how humans have influenced fire regimes prior to active wildfire suppression. Among the last 250 years, the human contribution to the global increase in fire occurrence during the mid-19th century is especially unclear, as data sources are limited. Here, we test the extent to which forest management has driven fire regime shifts in a temperate forest landscape. We combine multiple fire proxies (macroscopic charcoal and fire-related biomarkers) derived from highly resolved lake sediments (i.e., 3-5 years per sample), and apply a new statistical approach to classify source area- and temperature-specific fire regimes (biomass burnt, fire episodes). We compare these records with independent climate and vegetation reconstructions. We find two prominent fire regime shifts during the 19th and 20th centuries, driven by an adaptive socio-ecological cycle in human forest management. Although individual fire episodes were triggered mainly by arson (as described in historical documents) during dry summers, the biomass burnt increased unintentionally during the mid-19th century due to the plantation of flammable, fast-growing pine tree monocultures needed for industrialization. State forest management reacted with active fire management and suppression during the 20th century. However, pine cover has been increasing since the 1990s and climate projections predict increasingly dry conditions, suggesting a renewed need for adaptations to reduce the increasing fire risk.


Asunto(s)
Incendios , Agricultura Forestal/métodos , Bosques , Sedimentos Geológicos/química , Desarrollo Industrial , Carbón Orgánico/análisis , Lagos/química , Polonia
18.
FEMS Microbiol Ecol ; 95(7)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31150548

RESUMEN

The anaerobic oxidation of methane (AOM) is a microbial process present in marine and freshwater environments. AOM is important for reducing the emission of the second most important greenhouse gas methane. In marine environments anaerobic methanotrophic archaea (ANME) are involved in sulfate-reducing AOM. In contrast, Ca. Methanoperedens of the ANME-2d cluster carries out nitrate AOM in freshwater ecosystems. Despite the importance of those organisms for AOM in non-marine environments little is known about their lipid composition or carbon sources. To close this gap, we analysed the lipid composition of ANME-2d archaea and found that they mainly synthesise archaeol and hydroxyarchaeol as well as different (hydroxy-) glycerol dialkyl glycerol tetraethers, albeit in much lower amounts. Abundant lipid headgroups were dihexose, monomethyl-phosphatidyl ethanolamine and phosphatidyl hexose. Moreover, a monopentose was detected as a lipid headgroup that is rare among microorganisms. Batch incubations with 13C labelled bicarbonate and methane showed that methane is the main carbon source of ANME-2d archaea varying from ANME-1 archaea that primarily assimilate dissolved inorganic carbon (DIC). ANME-2d archaea also assimilate DIC, but to a lower extent than methane. The lipid characterisation and analysis of the carbon source of Ca. Methanoperedens facilitates distinction between ANME-2d and other ANMEs.


Asunto(s)
Archaea/química , Archaea/metabolismo , Lípidos/química , Metano/metabolismo , Agua de Mar/microbiología , Anaerobiosis , Archaea/clasificación , Carbono/metabolismo , Lípidos/biosíntesis , Nitratos/metabolismo , Oxidación-Reducción , Agua de Mar/química
19.
Plant Cell Physiol ; 60(8): 1666-1682, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31058972

RESUMEN

We investigated potential biosynthetic pathways of long chain alkenols (LCAs), long chain alkyl diols (LCDs), and long chain hydroxy fatty acids (LCHFAs) in Nannochloropsis oceanica and Nannochloropsis gaditana, by combining culturing experiments with genomic and transcriptomic analyses. Incubation of Nannochloropsis spp. in the dark for 1 week led to significant increases in the cellular concentrations of LCAs and LCDs in both species. Consistently, 13C-labelled substrate experiments confirmed that both LCA and LCD were actively produced in the dark from C14-18 fatty acids by either condensation or elongation/hydroxylation, although no enzymatic evidence was found for the former pathway. Nannochloropsis spp. did, however, contain (i) multiple polyketide synthases (PKSs) including one type (PKS-Clade II) that might catalyze incomplete fatty acid elongations leading to the formation of 3-OH-fatty acids, (ii) 3-hydroxyacyl dehydratases (HADs), which can possibly form Δ2/Δ3 monounsaturated fatty acids, and (iii) fatty acid elongases (FAEs) that could elongate 3-OH-fatty acids and Δ2/Δ3 monounsaturated fatty acids to longer products. The enzymes responsible for reduction of the long chain fatty acids to LCDs and LCAs are, however, unclear. A putative wax ester synthase/acyl coenzyme A (acyl-CoA): diacylglycerol acyltransferase is likely to be involved in the esterification of LCAs and LCDs in the cell wall. Our data thus provide useful insights in predicting the biosynthetic pathways of LCAs and LCDs in phytoplankton suggesting a key role of FAE and PKS enzymes.


Asunto(s)
Alcoholes/metabolismo , Alquenos/metabolismo , Sintasas Poliquetidas/metabolismo , Acetiltransferasas/metabolismo , Alcoholes/química , Alquenos/química , Enoil-CoA Hidratasa/metabolismo , Elongasas de Ácidos Grasos , Ácidos Grasos Monoinsaturados/metabolismo , Microalgas/enzimología , Microalgas/metabolismo , Especificidad por Sustrato
20.
Sci Rep ; 9(1): 4458, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872690

RESUMEN

During the late Eocene, the Earth's climate experienced several transient temperature fluctuations including the Vonhof cooling event (C16n.1n; ~35.8 Ma) hitherto known mainly from the southern oceans. Here we reconstruct sea-surface temperatures (SST) and provide δ18O and δ13C foraminiferal records for the late Eocene and earliest Oligocene in the North Sea Basin. Our data reveal two main perturbations: (1), an abrupt brief cooling of ~4.5 °C dated to ~35.8 Ma and synchronous with the Vonhof cooling, which thus may be a global event, and (2) a gradual nearly 10 °C temperature fall starting at 36.1 Ma and culminating near the Eocene-Oligocene transition at ~33.9 Ma. The late Priabonian temperature trend in the North Sea shows some resemblance IODP Site U1404 from the North Atlantic, offshore Newfoundland; and is in contrast to the more abrupt change observed in the deep-sea δ18O records from the southern oceans. The cooling in the North Sea is large compared to the pattern seen in the North Atlantic record. This difference may be influenced by a late Eocene closure of the warm gateways connecting the North Sea with the Atlantic and Tethys oceans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...