Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791000

RESUMEN

Cathepsin B (CtsB) is a ubiquitously expressed cysteine protease that plays important roles in health and disease. Urinary extracellular vesicles (uEVs) are released from cells associated with urinary organs. The antibiotic streptozotocin (STZ) is known to induce pancreatic islet beta cell destruction, diabetic nephropathy, and hypertension. We hypothesized that streptozotocin-induced diabetic kidney disease and hypertension result in the release of bioactive lipids from kidney cells that induce oxidative stress and renal cell death. Lipidomics was performed on uEVs isolated from CtsB knockout mice treated with or without STZ, and their kidneys were used to investigate changes in proteins associated with cell death. Lysophosphatidylethanolamine (LPE) (18:1), lysophosphatidylserine (LPS) (22:6), and lysophosphatidylglycerol (LPG) (22:5) were among the bioactive lipids enriched in uEVs from CtsB knockout mice treated with STZ compared to untreated CtsB mice (n = 3 uEV preparations per group). Anti-oxidant programming was activated in the kidneys of the CtsB knockout mice treated with STZ, as indicated by increased expression of glutathione peroxidase 4 (GPX4) and the cystine/glutamate antiporter SLC7A11 (XCT) (n = 4 mice per group), which was supported by a higher reactivity to 4-hydroxy-2-nonenal (4-HNE), a marker for oxidative stress (n = 3 mice per group). Apoptosis but not ferroptosis was the ongoing form of cell death in these kidneys as cleaved caspase-3 levels were significantly elevated in the STZ-treated CtsB knockout mice (n = 4 mice per group). There were no appreciable differences in the pro-ferroptosis enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) or the inflammatory marker CD93 in the kidneys (n = 3 mice per group), which further supports apoptosis as the prevalent mechanism of pathology. These data suggest that STZ treatment leads to oxidative stress, inducing apoptotic injury in the kidneys during the development of diabetic kidney disease and hypertension.

2.
Biomedicines ; 11(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36830842

RESUMEN

Diabetic nephropathy is the primary cause of morbidity in type 2 diabetes mellitus (T2DM) patients. New data indicate that hypertension, a common comorbidity in T2DM, can worsen outcomes of diabetic nephropathy. While metformin is a commonly prescribed drug for treating type 2 diabetes, its blood pressure regulating ability is not well documented. The aim of this study was to investigate the effect of metformin on normalizing blood pressure in salt-loaded hypertensive diabetic db/db mice. Sixteen-week-old male and female diabetic db/db mice were individually placed in metabolic cages and then randomized to a control vehicle (saline) or metformin treatment group. We evaluated the blood pressure reducing ability of metformin in salt-induced hypertension and progression of nephropathy in db/db mice. We observed that metformin- normalized systolic blood pressure in hypertensive diabetic mice. Mechanistically, metformin treatment reduced renal cathepsin B expression. Low cathepsin B expression was associated with reduced expression and activity of the epithelial sodium channel (ENaC), sodium retention, and thus control of hypertension. In addition, we identified that urinary extracellular vesicles (EVs) from the diabetic mice are enriched in cathepsin B. Compared to treatment with urinary EVs of vehicle-treated hypertensive diabetic mice, the amiloride-sensitive transepithelial current was significantly attenuated upon exposure of renal collecting duct cells to urinary EVs isolated from metformin-treated db/db mice or cathepsin B knockout mice. Collectively, our study identifies a novel blood pressure reducing role of metformin in diabetic nephropathy by regulating the cathepsin B-ENaC axis.

3.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499728

RESUMEN

Hypertension remains a major problem, especially in the elderly, as it increases the risk for cardiovascular, coronary artery, cerebrovascular, and kidney diseases. Extracellular vesicles (EVs) play a role in the aging process and contribute to pathophysiology. Our goal was to examine differences in lipid profiles of urinary EVs (uEVs) collected during the inactive and active phases of aged mice and investigate whether these EVs regulate the density of lipid rafts in mouse cortical collecting duct (mpkCCD) principal cells. Here, we demonstrate the epithelial sodium channel (ENaC) inhibitor benzyl amiloride reduced systolic blood pressure in aged male mice during the inactive and active phases. Lipidomics data demonstrate differential enrichment of lipids between the two groups. For example, there are more phosphatidylethanolamine plasmalogens, particularly in the form of alkyl phosphatidylethanolamines, that are enriched in active phase uEVs compared to inactive phase uEVs from the same mice. Amiloride-sensitive transepithelial current increased more in mpkCCD cells challenged with uEVs from the active phase group. Moreover, more ENaC alpha protein was distributed to lipid raft fractions of mpkCCD cells challenged with active phase uEVs. Taken together, the identification of bioactive lipids associated with lipid rafts that are enriched in EVs released during the active phase of aged mice may offer clues to help understand lipid raft organization in recipient principal cells after EV uptake and increased renal ENaC activity, leading to a time-of-day dependent regulation of blood pressure in an aging model.


Asunto(s)
Vesículas Extracelulares , Hipertensión , Ratones , Masculino , Animales , Canales Epiteliales de Sodio/metabolismo , Hipertensión/metabolismo , Vesículas Extracelulares/metabolismo , Riñón/metabolismo , Amilorida/farmacología , Lípidos
4.
Biomolecules ; 11(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34944449

RESUMEN

Salt-sensitive hypertension resulting from an increase in blood pressure after high dietary salt intake is associated with an increase in the production of reactive oxygen species (ROS). ROS are known to increase the activity of the epithelial sodium channel (ENaC), and therefore, they have an indirect effect on sodium retention and increasing blood pressure. Extracellular vesicles (EVs) carry various molecules including proteins, microRNAs, and lipids and play a role in intercellular communication and intracellular signaling in health and disease. We investigated changes in EV lipids, urinary electrolytes, osmolality, blood pressure, and expression of renal ENaC and its adaptor protein, MARCKS/MARCKS Like Protein 1 (MLP1) after administration of the antioxidant Tempol in salt-sensitive hypertensive 129Sv mice. Our results show Tempol infusion reduces systolic blood pressure and protein expression of the alpha subunit of ENaC and MARCKS in the kidney cortex of hypertensive 129Sv mice. Our lipidomic data show an enrichment of diacylglycerols and monoacylglycerols and reduction in ceramides, dihydroceramides, and triacylglycerols in urinary EVs from these mice after Tempol treatment. These data will provide insight into our understanding of mechanisms involving strategies aimed to inhibit ROS to alleviate salt-sensitive hypertension.


Asunto(s)
Antioxidantes/administración & dosificación , Óxidos N-Cíclicos/administración & dosificación , Vesículas Extracelulares/química , Hipertensión/tratamiento farmacológico , Lípidos/orina , Cloruro de Sodio Dietético/efectos adversos , Animales , Antioxidantes/farmacología , Proteínas de Unión a Calmodulina/metabolismo , Óxidos N-Cíclicos/farmacología , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/orina , Bombas de Infusión , Lipidómica , Ratones , Proteínas de Microfilamentos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...