Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Diabetes Obes Metab ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010284

RESUMEN

AIM: To investigate the associations of the Dietary Approaches to Stop Hypertension (DASH) score with subcutaneous (SAT) and visceral (VAT) adipose tissue volume and hepatic lipid content (HLC) in people with diabetes and to examine whether changes in the DASH diet were associated with changes in these outcomes. METHODS: In total, 335 participants with recent-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) from the German Diabetes Study were included in the cross-sectional analysis, and 111 participants in the analysis of changes during the 5-year follow-up. Associations between the DASH score and VAT, SAT and HLC and their changes were investigated using multivariable linear regression models by diabetes type. The proportion mediated by changes in potential mediators was determined using mediation analysis. RESULTS: A higher baseline DASH score was associated with lower HLC, especially in people with T2D (per 5 points: -1.5% [-2.7%; -0.3%]). Over 5 years, a 5-point increase in the DASH score was associated with decreased VAT in people with T2D (-514 [-800; -228] cm3). Similar, but imprecise, associations were observed for VAT changes in people with T1D (-403 [-861; 55] cm3) and for HLC in people with T2D (-1.3% [-2.8%; 0.3%]). Body mass index and waist circumference changes explained 8%-48% of the associations between DASH and VAT changes in both groups. In people with T2D, adipose tissue insulin resistance index (Adipo-IR) changes explained 47% of the association between DASH and HLC changes. CONCLUSIONS: A shift to a DASH-like diet was associated with favourable VAT and HLC changes, which were partly explained by changes in anthropometric measures and Adipo-IR.

4.
NMR Biomed ; 37(8): e5140, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38556731

RESUMEN

Maternal obesity and hyperglycemia are linked to an elevated risk for obesity, diabetes, and steatotic liver disease in the adult offspring. To establish and validate a noninvasive workflow for perinatal metabolic phenotyping, fixed neonates of common mouse strains were analyzed postmortem via magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS) to assess liver volume and hepatic lipid (HL) content. The key advantage of nondestructive MRI/MRS analysis is the possibility of further tissue analyses, such as immunohistochemistry, RNA extraction, and even proteomics, maximizing the data that can be gained per individual and therefore facilitating comprehensive correlation analyses. This study employed an MRI and 1H-MRS workflow to measure liver volume and HL content in 65 paraformaldehyde-fixed murine neonates at 11.7 T. Liver volume was obtained using semiautomatic segmentation of MRI acquired by a RARE sequence with 0.5-mm slice thickness. HL content was measured by a STEAM sequence, applied with and without water suppression. T1 and T2 relaxation times of lipids and water were measured for respective correction of signal intensity. The HL content, given as CH2/(CH2 + H2O), was calculated, and the intrasession repeatability of the method was tested. The established workflow yielded robust results with a variation of ~3% in repeated measurements for HL content determination. HL content measurements were further validated by correlation analysis with biochemically assessed triglyceride contents (R2 = 0.795) that were measured in littermates. In addition, image quality also allowed quantification of subcutaneous adipose tissue and stomach diameter. The highest HL content was measured in C57Bl/6N (4.2%) and the largest liver volume and stomach diameter in CBA (53.1 mm3 and 6.73 mm) and NMRI (51.4 mm3 and 5.96 mm) neonates, which also had the most subcutaneous adipose tissue. The observed effects were independent of sex and litter size. In conclusion, we have successfully tested and validated a robust MRI/MRS workflow that allows assessment of morphology and HL content and further enables paraformaldehyde-fixed tissue-compatible subsequent analyses in murine neonates.


Asunto(s)
Animales Recién Nacidos , Hígado , Imagen por Resonancia Magnética , Animales , Hígado/diagnóstico por imagen , Hígado/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos C57BL , Lípidos/análisis , Ratones , Tamaño de los Órganos , Espectroscopía de Resonancia Magnética , Femenino , Reproducibilidad de los Resultados , Fijación del Tejido , Autopsia , Masculino
5.
NMR Biomed ; 37(8): e5120, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38404058

RESUMEN

Concentrations of the key metabolites of hepatic energy metabolism, adenosine triphosphate (ATP) and inorganic phosphate (Pi), can be altered in metabolic disorders such as diabetes mellitus. 31Phosphorus (31P)-magnetic resonance spectroscopy (MRS) is used to noninvasively measure hepatic metabolites, but measuring their absolute molar concentrations remains challenging. This study employed a 31P-MRS method based on the phantom replacement technique for quantifying hepatic 31P-metabolites on a 3-T clinical scanner. Two surface coils with different size and geometry were used to check for consistency in terms of repeatability and reproducibility and absolute concentrations of metabolites. Day-to-day (n = 8) and intra-day (n = 6) reproducibility was tested in healthy volunteers. In the day-to-day study, mean absolute concentrations of γ-ATP and Pi were 2.32 ± 0.24 and 1.73 ± 0.26 mM (coefficient of variation [CV]: 7.3% and 8.8%) for the single loop, and 2.32 ± 0.42 and 1.73 ± 0.27 mM (CVs 6.7% and 10.6%) for the quadrature coil, respectively. The intra-day study reproducibility using the quadrature coil yielded CVs of 4.7% and 6.8% for γ-ATP and Pi without repositioning, and 6.3% and 7.1% with full repositioning of the volunteer. The results of the day-to-day data did not differ between coils and visits. Both coils robustly yielded similar results for absolute concentrations of hepatic 31P-metabolites. The current method, applied with two different surface coils, can be readily utilized in long-term and interventional studies. In comparison with the single loop coil, the quadrature coil also allows measurements at a greater distance between the coil and liver, which is relevant for studying people with obesity.


Asunto(s)
Adenosina Trifosfato , Hígado , Espectroscopía de Resonancia Magnética , Fosfatos , Humanos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/análisis , Hígado/metabolismo , Hígado/diagnóstico por imagen , Reproducibilidad de los Resultados , Fosfatos/metabolismo , Espectroscopía de Resonancia Magnética/instrumentación , Masculino , Adulto , Femenino , Isótopos de Fósforo , Fantasmas de Imagen
7.
J Magn Reson Imaging ; 59(4): 1193-1203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37530755

RESUMEN

BACKGROUND: Water T1 of the liver has been shown to be promising in discriminating the progressive forms of fatty liver diseases, inflammation, and fibrosis, yet proper correction for iron and lipid is required. PURPOSE: To examine the feasibility of an empirical approach for iron and lipid correction when measuring imaging-based T1 and to validate this approach by spectroscopy on in vivo data. STUDY TYPE: Retrospective. POPULATION: Next to mixed lipid-iron phantoms, individuals with different hepatic lipid content were investigated, including people with type 1 diabetes (N = 15, %female = 15.6, age = 43.5 ± 14.0), or type 2 diabetes mellitus (N = 21, %female = 28.9, age = 59.8 ± 9.7) and healthy volunteers (N = 9, %female = 11.1, age = 58.0 ± 8.1). FIELD STRENGTH/SEQUENCES: 3 T, balanced steady-state free precession MOdified Look-Locker Inversion recovery (MOLLI), multi- and dual-echo gradient echo Dixon, gradient echo magnetic resonance elastography (MRE). ASSESSMENT: T1 values were measured in phantoms to determine the respective correction factors. The correction was tested in vivo and validated by proton magnetic resonance spectroscopy (1 H-MRS). The quantification of liver T1 based on automatic segmentation was compared to the T1 values based on manual segmentation. The association of T1 with MRE-derived liver stiffness was evaluated. STATISTICAL TESTS: Bland-Altman plots and intraclass correlation coefficients (ICCs) were used for MOLLI vs. 1 H-MRS agreement and to compare liver T1 values from automatic vs. manual segmentation. Pearson's r correlation coefficients for T1 with hepatic lipids and liver stiffness were determined. A P-value of 0.05 was considered statistically significant. RESULTS: MOLLI T1 values after correction were found in better agreement with the 1 H-MRS-derived water T1 (ICC = 0.60 [0.37; 0.76]) in comparison with the uncorrected T1 values (ICC = 0.18 [-0.09; 0.44]). Automatic quantification yielded similar liver T1 values (ICC = 0.9995 [0.9991; 0.9997]) as with manual segmentation. A significant correlation of T1 with liver stiffness (r = 0.43 [0.11; 0.67]) was found. A marked and significant reduction in the correlation strength of T1 with liver stiffness (r = 0.05 [-0.28; 0.38], P = 0.77) was found after correction for hepatic lipid content. DATA CONCLUSION: Imaging-based correction factors enable accurate estimation of water T1 in vivo. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Diabetes Mellitus Tipo 2 , Imagen por Resonancia Magnética , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética/métodos , Agua , Estudios Retrospectivos , Hígado/diagnóstico por imagen , Hierro , Reproducibilidad de los Resultados , Lípidos
8.
Liver Int ; 44(1): 27-38, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37697960

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) has been linked to type 2 diabetes (T2D), but also to hypothyroidism. Nevertheless, the relationship between thyroid function and NAFLD in diabetes is less clear. This study investigated associations between free thyroxine (fT4) or thyroid-stimulating hormone (TSH) and NAFLD in recent-onset diabetes. METHODS: Participants with recent-onset type 1 diabetes (T1D, n = 358), T2D (n = 596) or without diabetes (CON, n = 175) of the German Diabetes Study (GDS), a prospective longitudinal cohort study, underwent Botnia clamp tests and assessment of fT4, TSH, fatty liver index (FLI) and in a representative subcohort 1 H-magnetic resonance spectroscopy. RESULTS: First, fT4 levels were similar between T1D and T2D (p = .55), but higher than in CON (T1D: p < .01; T2D: p < .001), while TSH concentrations were not different between all groups. Next, fT4 correlated negatively with FLI and positively with insulin sensitivity only in T2D (ß = -.110, p < .01; ß = .126, p < .05), specifically in males (ß = -.117, p < .05; ß = .162; p < .01) upon adjustments for age, sex and BMI. However, correlations between fT4 and FLI lost statistical significance after adjustment for insulin sensitivity (T2D: ß = -.021, p = 0.67; males with T2D: ß = -.033; p = .56). TSH was associated positively with FLI only in male T2D before (ß = .116, p < .05), but not after adjustments for age and BMI (ß = .052; p = .30). CONCLUSIONS: Steatosis risk correlates with lower thyroid function in T2D, which is mediated by insulin resistance and body mass, specifically in men, whereas no such relationship is present in T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Glándula Tiroides , Humanos , Masculino , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Estudios Longitudinales , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Estudios Prospectivos , Glándula Tiroides/fisiología , Tirotropina
9.
Lancet Diabetes Endocrinol ; 12(2): 119-131, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142707

RESUMEN

BACKGROUND: Heterogeneity in type 2 diabetes can be represented by a tree-like graph structure by use of reversed graph-embedded dimensionality reduction. We aimed to examine whether this approach can be used to stratify key pathophysiological components and diabetes-related complications during longitudinal follow-up of individuals with recent-onset type 2 diabetes. METHODS: For this cohort analysis, 927 participants aged 18-69 years from the German Diabetes Study (GDS) with recent-onset type 2 diabetes were mapped onto a previously developed two-dimensional tree based on nine simple clinical and laboratory variables, residualised for age and sex. Insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, insulin secretion was assessed by intravenous glucose tolerance test, hepatic lipid content was assessed by 1 H magnetic resonance spectroscopy, serum interleukin (IL)-6 and IL-18 were assessed by ELISA, and peripheral and autonomic neuropathy were assessed by functional and clinical measures. Participants were followed up for up to 16 years. We also investigated heart failure and all-cause mortality in 794 individuals with type 2 diabetes undergoing invasive coronary diagnostics from the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort. FINDINGS: There were gradients of clamp-measured insulin sensitivity (both dimensions: p<0·0001) and insulin secretion (pdim1<0·0001, pdim2=0·00097) across the tree. Individuals in the region with the lowest insulin sensitivity had the highest hepatic lipid content (n=205, pdim1<0·0001, pdim2=0·037), pro-inflammatory biomarkers (IL-6: n=348, pdim1<0·0001, pdim2=0·013; IL-18: n=350, pdim1<0·0001, pdim2=0·38), and elevated cardiovascular risk (nevents=143, pdim1=0·14, pdim2<0·00081), whereas individuals positioned in the branch with the lowest insulin secretion were more prone to require insulin therapy (nevents=85, pdim1=0·032, pdim2=0·12) and had the highest risk of diabetic sensorimotor polyneuropathy (nevents=184, pdim1=0·012, pdim2=0·044) and cardiac autonomic neuropathy (nevents=118, pdim1=0·0094, pdim2=0·06). In the LURIC cohort, all-cause mortality was highest in the tree branch showing insulin resistance (nevents=488, pdim1=0·12, pdim2=0·0032). Significant gradients differentiated individuals having heart failure with preserved ejection fraction from those who had heart failure with reduced ejection fraction. INTERPRETATION: These data define the pathophysiological underpinnings of the tree structure, which has the potential to stratify diabetes-related complications on the basis of routinely available variables and thereby expand the toolbox of precision diabetes diagnosis. FUNDING: German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, European Community, German Research Foundation, and Schmutzler Stiftung.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Resistencia a la Insulina , Humanos , Interleucina-18 , Estudios Prospectivos , Insulina/uso terapéutico , Lípidos
10.
Diabetologia ; 67(3): 407-419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38099962

RESUMEN

The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) imaging with the tracer [18F]-2-fluoro-2-deoxy-D-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. While the hyperinsulinaemic-euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Glucemia/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Fluorodesoxiglucosa F18/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Tomografía de Emisión de Positrones , Glucosa/metabolismo , Hígado/diagnóstico por imagen , Hígado/metabolismo , Insulina/metabolismo
11.
Nat Metab ; 5(12): 2086-2093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38066113

RESUMEN

Cotadutide is a dual glucagon-like peptide 1 and glucagon receptor agonist under development for the treatment of non-alcoholic steatohepatitis and type 2 diabetes mellitus (T2DM) and chronic kidney disease. Non-alcoholic steatohepatitis is a complex disease with no approved pharmacotherapies, arising from an underlying state of systemic metabolic dysfunction in association with T2DM and obesity. Cotadutide has been shown to improve glycaemic control, body weight, lipids, liver fat, inflammation and fibrosis. We conducted a two-part, randomized phase 2a trial in men and women with overweight or obesity diagnosed with T2DM to evaluate the efficacy and safety of cotadutide compared with placebo and liraglutide. The primary endpoints were change from baseline to day 28 of treatment in postprandial hepatic glycogen (part A) and to day 35 of treatment in fasting hepatic glycogen (part B) with cotadutide versus placebo. Secondary endpoints in part B were changes in fasting hepatic glycogen with cotadutide versus the mono glucagon-like peptide 1 receptor agonist, liraglutide, and change in hepatic fat fraction. The trial met its primary endpoint. We showed that cotadutide promotes greater reductions in liver glycogen and fat compared with placebo and liraglutide. Safety and tolerability findings with cotadutide were comparable to those of previous reports. Thus, this work provides evidence of additional benefits of cotadutide that could be attributed to glucagon receptor engagement. Our results suggest that cotadutide acts on the glucagon receptor in the human liver to promote glycogenolysis and improve the metabolic health of the liver. ClinicalTrials.gov registration: NCT03555994 .


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucogenólisis , Enfermedad del Hígado Graso no Alcohólico , Masculino , Humanos , Femenino , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Sobrepeso/complicaciones , Sobrepeso/tratamiento farmacológico , Liraglutida/efectos adversos , Receptores de Glucagón/uso terapéutico , Glucógeno Hepático , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Péptidos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/complicaciones
12.
Diabetes Care ; 46(12): 2232-2239, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37874983

RESUMEN

OBJECTIVE: Diabetes may feature impaired insulin kinetics, which could be aggravated by altered hepatic metabolism and glycemic control. Thus, we examined insulin clearance and its possible determinants in individuals with recent-onset diabetes. RESEARCH DESIGN AND METHODS: Participants of the German Diabetes Study (GDS) with type 1 diabetes (T1D) (n = 306), type 2 diabetes (T2D) (n = 489), or normal glucose tolerance (control [CON]) (n = 167) underwent hyperinsulinemic-euglycemic clamps for assessment of whole-body insulin sensitivity (M value) and insulin clearance (ICCLAMP). Insulin clearance rates were further calculated during intravenous glucose tolerance tests (ICIVGTT) and mixed-meal tests (ICMMT). Hepatocellular lipid content (HCL) was quantified with 1H-MRS. RESULTS: Both T1D and T2D groups had lower ICCLAMP (0.12 ± 0.07 and 0.21 ± 0.06 vs. 0.28 ± 0.14 arbitrary units [a.u.], respectively, all P < 0.05) and ICMMT (0.71 ± 0.35 and 0.99 ± 0.33 vs. 1.20 ± 0.36 a.u., all P < 0.05) than CON. In T1D, ICCLAMP, ICIVGTT, and ICMMT correlated negatively with HbA1c (all P < 0.05). M value correlated positively with ICIVGTT in CON and T2D (r = 0.199 and r = 0.178, P < 0.05) and with ICMMT in CON (r = 0.176, P < 0.05). HCL negatively associated with ICIVGTT and ICMMT in T2D (r = -0.005 and r = -0.037) and CON (r = -0.127 and r = -0.058, all P < 0.05). In line, T2D or CON subjects with steatosis featured lower ICMMT than those without steatosis (both P < 0.05). CONCLUSIONS: Insulin clearance is reduced in both T1D and T2D within the first year after diagnosis but correlates negatively with liver lipid content rather in T2D. Moreover, insulin clearance differently associates with glycemic control and insulin sensitivity in each diabetes type, which may suggest specific mechanisms affecting insulin kinetics.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Control Glucémico , Hígado/metabolismo , Insulina Regular Humana , Lípidos
13.
J Cardiovasc Magn Reson ; 25(1): 54, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37784080

RESUMEN

BACKGROUND: Macrophages play a pivotal role in vascular inflammation and predict cardiovascular complications. Fluorine-19 magnetic resonance imaging (19F MRI) with intravenously applied perfluorocarbon allows a background-free direct quantification of macrophage abundance in experimental vascular disease models in mice. Recently, perfluorooctyl bromide-nanoemulsion (PFOB-NE) was applied to effectively image macrophage infiltration in a pig model of myocardial infarction using clinical MRI scanners. In the present proof-of-concept approach, we aimed to non-invasively image monocyte/macrophage infiltration in response to carotid artery angioplasty in pigs using 19F MRI to assess early inflammatory response to mechanical injury. METHODS: In eight minipigs, two different types of vascular injury were conducted: a mild injury employing balloon oversize angioplasty only (BA, n = 4) and a severe injury provoked by BA in combination with endothelial denudation (BA + ECDN, n = 4). PFOB-NE was administered intravenously three days after injury followed by 1H and 19F MRI to assess vascular inflammatory burden at day six. Vascular response to mechanical injury was validated using X-ray angiography, intravascular ultrasound and immunohistology in at least 10 segments per carotid artery. RESULTS: Angioplasty was successfully induced in all eight pigs. Response to injury was characterized by positive remodeling with predominantly adventitial wall thickening and concomitant infiltration of monocytes/macrophages. No severe adverse reactions were observed following PFOB-NE administration. In vivo 19F signals were only detected in the four pigs following BA + ECDN with a robust signal-to-noise ratio (SNR) of 14.7 ± 4.8. Ex vivo analysis revealed a linear correlation of 19F SNR to local monocyte/macrophage cell density. Minimum detection limit of infiltrated monocytes/macrophages was estimated at approximately 410 cells/mm2. CONCLUSIONS: In this proof-of-concept study, 19F MRI enabled quantification of monocyte/macrophage infiltration after vascular injury with sufficient sensitivity. This may provide the opportunity to non-invasively monitor vascular inflammation with MRI in patients after angioplasty or even in atherosclerotic plaques.


Asunto(s)
Lesiones del Sistema Vascular , Humanos , Animales , Ratones , Porcinos , Porcinos Enanos , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética/métodos , Angioplastia , Inflamación/diagnóstico por imagen , Inflamación/etiología
14.
Obesity (Silver Spring) ; 31(10): 2493-2504, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37670579

RESUMEN

OBJECTIVE: Insulin resistance is characterized by ectopic fat accumulation leading to cardiac diastolic dysfunction and nonalcoholic fatty liver disease. The objective of this study was to determine whether treatment with the peroxisome proliferator-activated receptor-α (PPARα) agonist ciprofibrate has direct effects on cardiac and hepatic metabolism and can improve insulin sensitivity and cardiac function in insulin-resistant volunteers. METHODS: Ten insulin-resistant male volunteers received 100 mg/d of ciprofibrate and placebo for 5 weeks in a randomized double-blind crossover study. Insulin-stimulated metabolic rate of glucose (MRgluc) was measured using dynamic 18 F-fluorodeoxyglucose-positron emission tomography (18 F-FDG-PET). Additionally, cardiac function, whole-body insulin sensitivity, intrahepatic lipid content, skeletal muscle gene expression, 24-hour blood pressure, and substrate metabolism were measured. RESULTS: Whole-body insulin sensitivity, energy metabolism, and body composition were unchanged after ciprofibrate treatment. Ciprofibrate treatment decreased insulin-stimulated hepatic MRgluc and increased hepatic lipid content. Myocardial net MRgluc tended to decrease after ciprofibrate treatment, but ciprofibrate treatment had no effect on cardiac function and cardiac energy status. In addition, no changes in PPAR-related gene expression in muscle were found. CONCLUSIONS: Ciprofibrate treatment increased hepatic lipid accumulation and lowered MRgluc, without affecting whole-body insulin sensitivity. Furthermore, parameters of cardiac function or cardiac energy status were not altered upon ciprofibrate treatment.


Asunto(s)
Resistencia a la Insulina , Insulina , Masculino , Humanos , PPAR alfa , Estudios Cruzados , Hipoglucemiantes , Músculo Esquelético , Fluorodesoxiglucosa F18 , Lípidos
15.
Obesity (Silver Spring) ; 31(10): 2447-2459, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37667838

RESUMEN

Advances in the development of noninvasive imaging techniques have spurred investigations into ectopic lipid deposition in the liver and muscle and its implications in the development of metabolic diseases such as type 2 diabetes. Computed tomography and ultrasound have been applied in the past, though magnetic resonance-based methods are currently considered the gold standard as they allow more accurate quantitative detection of ectopic lipid stores. This review focuses on methodological considerations of magnetic resonance-based methods to image hepatic and muscle fat fractions, and it emphasizes anatomical and morphological aspects and how these may influence data acquisition, analysis, and interpretation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Espectroscopía de Protones por Resonancia Magnética , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Hígado/diagnóstico por imagen , Músculos , Lípidos
16.
Diabetes ; 72(10): 1483-1492, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37478166

RESUMEN

Intramyocellular lipid content (IMCL) is elevated in insulin-resistant humans, but it changes over time, and relationships with comorbidities remain unclear. We examined IMCL during the initial course of diabetes and its associations with complications. Participants of the German Diabetes Study (GDS) with recent-onset type 1 (n = 132) or type 2 diabetes (n = 139) and glucose-tolerant control subjects (n = 128) underwent 1H-MRS to measure IMCL and muscle volume, whole-body insulin sensitivity (hyperinsulinemic-euglycemic clamps; M-value), and cycling spiroergometry (VO2max). Subgroups underwent the same measurements after 5 years. At baseline, IMCL was ∼30% higher in type 2 diabetes than in other groups independently of age, sex, BMI, and muscle volume. In type 2 diabetes, the M-value was ∼36% and ∼62% lower compared with type 1 diabetes and control subjects, respectively. After 5 years, the M-value decreased by ∼29% in type 1 and ∼13% in type 2 diabetes, whereas IMCL remained unchanged. The correlation between IMCL and M-value in type 2 diabetes at baseline was modulated by VO2max. IMCL also associated with microalbuminuria, the Framingham risk score for cardiovascular disease, and cardiac autonomic neuropathy. Changes in IMCL within 5 years after diagnosis do not mirror the progression of insulin resistance in type 2 diabetes but associate with early diabetes-related complications. ARTICLE HIGHLIGHTS: Intramyocellular lipid content (IMCL) can be elevated in insulin-resistant humans, but its dynamics and association with comorbidities remain unclear. Independently of age, sex, body mass, and skeletal muscle volume, IMCL is higher in recent-onset type 2, but not type 1 diabetes, and remains unchanged within 5 years, despite worsening insulin resistance. A degree of physical fitness modulates the association between IMCL and insulin sensitivity in type 2 diabetes. Whereas higher IMCL associates with lower insulin sensitivity in people with lower physical fitness, there is no association between IMCL and insulin sensitivity in those with higher degree of physical fitness. IMCL associates with progression of microalbuminuria, cardiovascular disease risk, and cardiac autonomic neuropathy.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Preescolar , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/fisiología , Triglicéridos/metabolismo , Enfermedades Cardiovasculares/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Metabolismo de los Lípidos
17.
Artículo en Inglés | MEDLINE | ID: mdl-37433698

RESUMEN

INTRODUCTION: To investigate the associations of a lifestyle score with various cardiovascular risk markers, indicators for fatty liver disease as well as MRI-determined total, subcutaneous and visceral adipose tissue mass in adults with new-onset diabetes. RESEARCH DESIGN AND METHODS: This cross-sectional analysis included 196 individuals with type 1 (median age: 35 years; median body mass index (BMI): 24 kg/m²) and 272 with type 2 diabetes (median age: 53 years; median BMI: 31 kg/m²) from the German Diabetes Study. A healthy lifestyle score was generated based on healthy diet, moderate alcohol consumption, recreational activity, non-smoking and non-obese BMI. These factors were summed to form a score ranging from 0 to 5. Multivariable linear and non-linear regression models were used. RESULTS: In total, 8.1% of the individuals adhered to none or one, 17.7% to two, 29.7% to three, 26.7% to four, and 17.7% to all five favorable lifestyle factors. High compared with low adherence to the lifestyle score was associated with more favorable outcome measures, including triglycerides (ß (95% CI) -49.1 mg/dL (-76.7; -21.4)), low-density lipoprotein (-16.7 mg/dL (-31.3; -2.0)), and high-density lipoprotein cholesterol (13.5 mg/dL (7.6; 19.4)), glycated hemoglobin (-0.5% (-0.8%; -0.1%)), high-sensitivity C reactive protein (-0.4 mg/dL (-0.6; -0.2)), as well as lower hepatic fat content (-8.3% (-11.9%; -4.7%)), and visceral adipose tissue mass (-1.8 dm³ (-2.9; -0.7)). The dose-response analyses showed that adherence to every additional healthy lifestyle factor was associated with more beneficial risk profiles. CONCLUSIONS: Adherence to each additional healthy lifestyle factor was beneficially associated with cardiovascular risk markers, indicators of fatty liver disease and adipose tissue mass. Strongest associations were observed for adherence to all healthy lifestyle factors in combination. TRIAL REGISTRATION NUMBER: NCT01055093.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Persona de Mediana Edad , Estudios Transversales , Estilo de Vida , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología
18.
Nutr Metab Cardiovasc Dis ; 33(9): 1785-1796, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495452

RESUMEN

BACKGROUND AND AIMS: Increased hepatocellular lipid content (HCL) is linked to insulin resistance, risk of type 2 diabetes and related complications. Conversely, a single-nucleotide polymorphism (TM6SF2EK; rs58542926) in the transmembrane 6 superfamily member 2-gene has been associated with nonalcoholic fatty liver disease (NAFLD), but lower cardiovascular risk. This case-control study tested the role of this polymorphism for tissue-specific insulin sensitivity during early course of diabetes. METHODS AND RESULTS: Males with recent-onset type 2 diabetes with (TM6SF2EK: n = 16) or without (TM6SF2EE: n = 16) the heterozygous TM6SF2-polymorphism of similar age and body mass index, underwent Botnia-clamps with [6,6-2H2]glucose to measure whole-body-, hepatic- and adipose tissue-insulin sensitivity. HCL was assessed with 1H-magnetic-resonance-spectroscopy. A subset of both groups (n = 24) was re-evaluated after 5 years. Despite doubled HCL, TM6SF2EK had similar hepatic- and adipose tissue-insulin sensitivity and 27% higher whole-body-insulin sensitivity than TM6SF2EE. After 5 years, whole-body-insulin sensitivity, HCL were similar between groups, while adipose tissue-insulin sensitivity decreased by 87% and 55% within both groups and circulating triacylglycerol increased in TM6SF2EE only. CONCLUSIONS: The TM6SF2-polymorphism rs58542926 dissociates HCL from insulin resistance in recent-onset type 2 diabetes, which is attenuated by disease duration. This suggests that diabetes-related metabolic alterations dominate over effects of the TM6SF2-polymorphism during early course of diabetes and NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Resistencia a la Insulina/genética , Hígado/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Polimorfismo de Nucleótido Simple , Triglicéridos/metabolismo
19.
Physiol Rep ; 11(12): e15734, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37340318

RESUMEN

Mitochondria are organelles that fuel cellular energy requirements by ATP formation via aerobic metabolism. Given the wide variety of methods to assess skeletal muscle mitochondrial capacity, we tested how well different invasive and noninvasive markers of skeletal muscle mitochondrial capacity reflect mitochondrial respiration in permeabilized muscle fibers. Nineteen young men (mean age: 24 ± 4 years) were recruited, and a muscle biopsy was collected to determine mitochondrial respiration from permeabilized muscle fibers and to quantify markers of mitochondrial capacity, content such as citrate synthase (CS) activity, mitochondrial DNA copy number, TOMM20, VDAC, and protein content for complex I-V of the oxidative phosphorylation (OXPHOS) system. Additionally, all participants underwent noninvasive assessments of mitochondrial capacity: PCr recovery postexercise (by 31 P-MRS), maximal aerobic capacity, and gross exercise efficiency by cycling exercise. From the invasive markers, Complex V protein content and CS activity showed the strongest concordance (Rc = 0.50 to 0.72) with ADP-stimulated coupled mitochondrial respiration, fueled by various substrates. Complex V protein content showed the strongest concordance (Rc = 0.72) with maximally uncoupled mitochondrial respiration. From the noninvasive markers, gross exercise efficiency, VO2max , and PCr recovery exhibited concordance values between 0.50 and 0.77 with ADP-stimulated coupled mitochondrial respiration. Gross exercise efficiency showed the strongest concordance with maximally uncoupled mitochondrial respiration (Rc = 0.67). From the invasive markers, Complex V protein content and CS activity are surrogates that best reflect skeletal muscle mitochondrial respiratory capacity. From the noninvasive markers, exercise efficiency and PCr recovery postexercise most closely reflect skeletal muscle mitochondrial respiratory capacity.


Asunto(s)
Mitocondrias Musculares , Músculo Esquelético , Masculino , Humanos , Adulto Joven , Adulto , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno
20.
Obesity (Silver Spring) ; 31(7): 1745-1754, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37368517

RESUMEN

OBJECTIVE: This study (1) investigated the effect of weight loss on whole-body and tissue-specific insulin sensitivity and on intrahepatic lipid (IHL) content and composition and (2) investigated the association between weight-loss-induced changes in insulin sensitivity and IHL content in individuals with overweight or obesity. METHODS: In this secondary analysis of the European SWEET project, 50 adults (age 18-65 years) with overweight or obesity (BMI ≥ 25 kg/m2 ) followed a low-energy diet (LED) for 2 months. At baseline and after the LED, body composition (dual-energy x-ray absorptiometry), IHL content and composition (proton magnetic resonance spectroscopy), whole-body insulin sensitivity (Matsuda index), muscle insulin sensitivity index (MISI), and hepatic insulin resistance index (HIRI) were determined (7-point oral glucose tolerance test). RESULTS: The LED reduced body weight (p < 0.001). This was accompanied by increased Matsuda index and reduced HIRI (both p < 0.001) but no change in MISI (p = 0.260). Weight loss decreased IHL content (mean [SEM], 3.9% [0.7%] vs. 1.6% [0.5%], p < 0.001) and the hepatic saturated fatty acid fraction (41.0% [1.5%] vs. 36.6% [1.9%], p = 0.039). The reduced IHL content was associated with an improvement in HIRI (r = 0.402, p = 0.025). CONCLUSIONS: Weight loss decreased IHL content and the hepatic saturated fatty acid fraction. The decrease in IHL content was associated with weight-loss-induced improvement in hepatic insulin sensitivity in individuals with overweight or obesity.


Asunto(s)
Resistencia a la Insulina , Adulto , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Resistencia a la Insulina/fisiología , Sobrepeso , Hígado/diagnóstico por imagen , Obesidad , Pérdida de Peso , Insulina , Lípidos , Ácidos Grasos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...