Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(14): 6764-6771, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33885478

RESUMEN

The architectural design of nanocatalysts plays a critical role in the achievement of high densities of active sites but current technologies are hindered by process complexity and limited scaleability. The present work introduces a rapid, flexible, and template-free method to synthesize three-dimensional (3D), mesoporous, CeO2-x nanostructures comprised of extremely thin holey two-dimensional (2D) nanosheets of centimetre-scale. The process leverages the controlled conversion of stacked nanosheets of a newly developed Ce-based coordination polymer into a range of stable oxide morphologies controllably differentiated by the oxidation kinetics. The resultant polycrystalline, hybrid, 2D-3D CeO2-x exhibits high densities of defects and surface area as high as 251 m2 g-1, which yield an outstanding CO conversion performance (T90% = 148 °C) for all oxides. Modification by the creation of heterojunction nanostructures using transition metal oxides (TMOs) results in further improvements in performance (T90% = 88 °C), which are interpreted in terms of the active sites associated with the TMOs that are identified through structural analyses and density functional theory (DFT) simulations. This unparalleled catalytic performance for CO conversion is possible through the ultra-high surface areas, defect densities, and pore volumes. This technology offers the capacity to establish efficient pathways to engineer nanostructures of advanced functionalities for catalysis.

2.
Regen Eng Transl Med ; 6: 299-309, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33225044

RESUMEN

A blood clot is formed in response to bleeding by platelet aggregation and adherence to fibrin fibers. Platelets contract over time, stabilizing the clot, which contributes to wound healing. We have developed platelet-like particles (PLPs) that augment clotting and induce clot retraction by mimicking the fibrin-binding capabilities and morphology of native platelets. Wound repair following hemostasis can be complicated by infection; therefore, we aim to augment wound healing by combining PLPs with antimicrobial gold to develop nanogold composites (NGCs). PLPs were synthesized with N-isopropylacrylamide (NIPAm)/co-acrylic acid in a precipitation polymerization reaction and conjugated to a fibrin-specific antibody. Two methods were employed to create NGCs: 1) noncovalent swelling with aqueous gold nanospheres, and 2) covalent seeding and growth. Since the ability of PLPs to mimic platelet morphology and clot retraction requires a high degree of particle deformability, we investigated how PLPs created from NGCs affected these properties. Cryogenic Scanning Electron Microscopy (cryoSEM) and atomic force microscopy (AFM) demonstrated that particle deformability, platelet-mimetic morphology and clot retraction were maintained in NGC-based PLPs. The effect of NGCs on bacterial adhesion and growth was assessed with antimicrobial assays. These results demonstrate NGCs fabricated through noncovalent and covalent methods retain deformability necessary for clot collapse and exhibit some antimicrobial potential. Therefore, NGCs are promising materials for preventing hemorrhage and infection following trauma.

3.
Adv Biosyst ; 2(10)2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33564714

RESUMEN

Platelets mediate hemostasis by aggregating and binding to fibrin to promote clotting. Over time, platelets contract the fibrin network to induce clot retraction, which contributes to wound healing outcomes by increasing clot stability and improving blood flow to ischemic tissue. In this study, we describe the development of hollow platelet-like particles (PLPs) that mimic the native platelet function of clot retraction in a controlled manner and demonstrate that clot retraction-inducing PLPs promote healing in vivo. PLPs are created by coupling fibrin-binding antibodies to CoreShell (CS) or hollow N-isopropylacrylamide (NIPAm) microgels with varying degrees of shell crosslinking. We demonstrate that hollow microgels with loosely crosslinked shells display a high degree of deformability and mimic activated platelet morphology, while intact CS microgels and hollow microgels with increased crosslinking in the shell do not. When coupled to a fibrin-binding antibody to create PLPs, hollow particles with low degrees of shell crosslinking cause fibrin clot collapse in vitro, recapitulating the clot retraction function of platelets, while other particle types do not. Furthermore, hollow PLPs with low degrees of shell crosslinking improve some wound healing outcomes in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...