Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Tissue Eng Regen Med ; 13(11): 1992-2008, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31359634

RESUMEN

Mechanical boundary conditions critically influence the bone healing process. In this context, previous in vitro studies have demonstrated that cyclic mechanical compression alters migration and triggers osteogenesis of mesenchymal stromal cells (MSC), both processes being relevant to healing. However, it remains unclear whether this mechanosensitivity is a direct consequence of cyclic compression, an indirect effect of altered supply or a specific modulation of autocrine bone morphogenetic protein (BMP) signaling. Here, we investigate the influence of cyclic mechanical compression (ε = 5% and 10%, f = 1 Hz) on human bone marrow MSC (hBMSC) migration and osteogenic differentiation in a 3D biomaterial scaffold, an in vitro system mimicking the mechanical environment of the early bone healing phase. The open-porous architecture of the scaffold ensured sufficient supply even without cyclic compression, minimizing load-associated supply alterations. Furthermore, a large culture medium volume in relation to the cell number diminished autocrine signaling. Migration of hBMSCs was significantly downregulated under cyclic compression. Surprisingly, a decrease in migration was not associated with increased osteogenic differentiation of hBMSCs, as the expression of RUNX2 and osteocalcin decreased. In contrast, BMP2 expression was significantly upregulated. Enabling autocrine stimulation by increasing the cell-to-medium ratio in the bioreactor finally resulted in a significant upregulation of RUNX2 in response to cyclic compression, which could be reversed by rhNoggin treatment. The results indicate that osteogenesis is promoted by cyclic compression when cells condition their environment with BMP. Our findings highlight the importance of mutual interactions between mechanical forces and BMP signaling in controlling osteogenic differentiation.


Asunto(s)
Comunicación Autocrina , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Estrés Mecánico , Animales , Humanos , Porcinos
2.
Adv Sci (Weinh) ; 6(9): 1801780, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31065517

RESUMEN

Wound contraction is an ancient survival mechanism of vertebrates that results from tensile forces supporting wound closure. So far, tissue tension was attributed to cellular forces produced by tissue-resident (myo-)fibroblasts alone. However, difficulties in explaining pathological deviations from a successful healing path motivate the exploration of additional modulatory factors. Here, it is shown in a biomaterial-based in vitro wound healing model that the storage of tensile forces in the extracellular matrix has a significant, so-far neglected contribution to macroscopic tissue tension. In situ monitoring of tissue forces together with second harmonic imaging reveal that the appearance of collagen fibrils correlates with tissue contraction, indicating a mechanical contribution of tensioned collagen fibrils in the contraction process. As the re-establishment of tissue tension is key to successful wound healing, the findings are expected to advance the understanding of tissue healing but also underlying principles of misregulation and impaired functionality in scars and tissue contractures.

3.
JBMR Plus ; 2(3): 174-186, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30283901

RESUMEN

Successful fracture healing requires a tight interplay between mechanical and biological cues. In vitro studies illustrated that mechanical loading modulates bone morphogenetic protein (BMP) signaling. However, in the early phases of large bone defect regeneration in vivo, the underlying mechanisms leading to this mechanosensation remained unknown. We investigated the interaction of BMP2 stimulation and mechanical boundary conditions in a rat critical-sized femoral defect model (5 mm) stabilized with three distinctly different external fixator stiffness. Defects were treated with 5 µg rhBMP2 loaded on an absorbable collagen sponge. Early matrix alignment was monitored by second-harmonic generation imaging. Bony bridging of defects and successive healing was monitored by histology at day 7 and day 14 as well as in vivo microCT at days 10, 21, and 42 post-operation. Femora harvested at day 42 were characterized mechanically assessing torsional load to failure ex vivo. At tissue level, differences between groups were visible at day 14 with manifest bone formation in the microCT. Histologically, we observed prolonged chondrogenesis upon flexible fixation, whereas osteogenesis started earlier after rigid and semirigid fixation. At later time points, there was a boost of bone tissue formation upon flexible fixation, whereas other groups already displayed signs of tissue maturation. Based on gene expression profiling, we analyzed the mechanobiological interplay. Already at day 3, these analyses revealed differences in expression pattern, specifically of genes involved in extracellular matrix formation. Gene regulation correlating with fixator stiffness was pronounced at day 7 comprising genes related to immunological processes and cellular contraction. The influence of loading on matrix contraction was further investigated and confirmed in a 3D bioreactor. Taken together, we demonstrate an early onset of mechanical conditions influencing BMP2-induced defect healing and shed light on gene regulatory networks associated with extracellular matrix organization and contraction that seemed to directly impact healing outcomes. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

4.
PLoS One ; 13(10): e0206041, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30365513

RESUMEN

Yes-associated protein (YAP) acts as a mechanotransducer in determining the cell fate of murine C2C12 mesenchymal precursors as investigated after stimulation with ultrasound. We applied Focused Low-Intensity Pulsed Ultrasound (FLIPUS) at a sound frequency of 3.6 MHz, 100 Hz pulse repetition frequency (PRF), 27.8% duty cycle (DC), and 44.5 mW/cm2 acoustic intensity ISATA for 5 minutes and evaluated early cellular responses. FLIPUS decreased the level of phosphorylated YAP on Serine 127, leading to higher levels of active YAP in the nucleus. This in turn enhanced the expression of YAP-target genes associated with actin nucleation and stabilization, cytokinesis, and cell cycle progression. FLIPUS enhanced proliferation of C2C12 cells, whereas silencing of YAP expression abolished the beneficial effects of ultrasound. The expression of the transcription factor MyoD, defining cellular myogenic differentiation, was inhibited by mechanical stimulation. This study shows that ultrasound exposure regulates YAP functioning, which in turn improves the cell proliferative potential, critical for tissue regeneration process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mecanotransducción Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Ondas Ultrasónicas , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Ratones , Modelos Biológicos , Fosfoproteínas/genética , Fosforilación , Fosfoserina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/genética , Proteínas Señalizadoras YAP
5.
Antioxid Redox Signal ; 20(6): 855-67, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23923978

RESUMEN

UNLABELLED: The tight junction (TJ) marker occludin is a 4-transmembrane domain (TMD) protein with unclear physiological and pathological functions, interacting with other TJ proteins. It oligomerizes and is redox sensitive. However, oligomerization sites and mechanisms are unknown. AIMS: To identify hypoxia-sensitive binding sites, we investigated the consequences of amino-acid substitutions of highly conserved cysteines in human occludin, under normal and hypoxic incubations. RESULTS: (i) The extracellular loop 2 (ECL2) showed homophilic trans- and cis-association between opposing cells and along the cell membrane, respectively, caused by a loop properly folded via an intraloop disulfide bridge between the shielded C216 and C237. Hypoxia and reductants prevented the associations. (ii) C82 in TMD1 directly cis-associated without disulfide formation. (iii) C76 in TMD1 and C148 in TMD2 limited the trans-interaction; C76 also limited occludin-related paracellular tightness and changed the strand morphology of claudin-1. (iv) The diminished binding strength found after substituting C82, C216, or C237 was accompanied by increased occludin mobility in the cell membrane. INNOVATION: The data enable the first experimentally proven structural model of occludin and its homophilic interaction sites, in which the ECL2, via intraloop disulfide formation, has a central role in occludin's hypoxia-sensitive oligomerization and to regulate the structure of TJs. CONCLUSION: Our findings support the new concept that occludin acts as a hypoxiasensor and contributes toward regulating the TJ assembly redox dependently. This is of pathogenic relevance for tissue barrier injury with reducing conditions. The ECL2 disulfide might be a model for four TMD proteins in TJs with two conserved cysteines in an ECL.


Asunto(s)
Cisteína/química , Ocludina/química , Ocludina/metabolismo , Membrana Celular/metabolismo , Humanos , Oxidación-Reducción , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...