Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Opin Chem Biol ; 81: 102461, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38810503

RESUMEN

Nicotinamide adenine dinucleotide (NADPH) oxidases, known for their role in generating reactive oxygen species (ROS) have emerged as key regulators of specific cellular signaling pathways. While their primary function is ROS production, recent research has highlighted the significance of their site-specific activity in governing distinct cellular signaling events. NADPH oxidases (Nox) are found in various cell types, and both their expression and activities are tightly regulated. The generated ROS, such as superoxide anions and hydrogen peroxide, function as secondary messengers that modulate various signaling molecules, including protein kinases, transcription factors, and phosphatases. The site-specific action of NADPH oxidases in different cellular compartments, such as the plasma membrane, endosomes, and endoplasmic reticulum, allows for precise control over specific signaling pathways. Understanding the complex interplay of NADPH oxidases in cellular signaling is essential for deciphering their roles in health and disease. Dysregulation of these enzymes can lead to oxidative stress and inflammation, making them potential therapeutic targets in various pathological conditions. Ongoing research into NADPH oxidase activation and site-specific signaling promises to unveil new insights into cellular physiology and potential treatment strategies.

2.
Clin Res Cardiol ; 113(5): 672-679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37847314

RESUMEN

The sharing and documentation of cardiovascular research data are essential for efficient use and reuse of data, thereby aiding scientific transparency, accelerating the progress of cardiovascular research and healthcare, and contributing to the reproducibility of research results. However, challenges remain. This position paper, written on behalf of and approved by the German Cardiac Society and German Centre for Cardiovascular Research, summarizes our current understanding of the challenges in cardiovascular research data management (RDM). These challenges include lack of time, awareness, incentives, and funding for implementing effective RDM; lack of standardization in RDM processes; a need to better identify meaningful and actionable data among the increasing volume and complexity of data being acquired; and a lack of understanding of the legal aspects of data sharing. While several tools exist to increase the degree to which data are findable, accessible, interoperable, and reusable (FAIR), more work is needed to lower the threshold for effective RDM not just in cardiovascular research but in all biomedical research, with data sharing and reuse being factored in at every stage of the scientific process. A culture of open science with FAIR research data should be fostered through education and training of early-career and established research professionals. Ultimately, FAIR RDM requires permanent, long-term effort at all levels. If outcomes can be shown to be superior and to promote better (and better value) science, modern RDM will make a positive difference to cardiovascular science and practice. The full position paper is available in the supplementary materials.


Asunto(s)
Investigación Biomédica , Sistema Cardiovascular , Humanos , Manejo de Datos , Reproducibilidad de los Resultados , Corazón
3.
Cells ; 12(17)2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37681884

RESUMEN

Electrical stimulation (EStim), whether used alone or in combination with bone tissue engineering (BTE) approaches, has been shown to promote bone healing. In our previous in vitro studies, mesenchymal stem cells (MSCs) were exposed to EStim and a sustained, long-lasting increase in osteogenic activity was observed. Based on these findings, we hypothesized that pretreating MSC with EStim, in 2D or 3D cultures, before using them to treat large bone defects would improve BTE treatments. Critical size femur defects were created in 120 Sprague-Dawley rats and treated with scaffold granules seeded with MSCs that were pre-exposed or not (control group) to EStim 1 h/day for 7 days in 2D (MSCs alone) or 3D culture (MSCs + scaffolds). Bone healing was assessed at 1, 4, and 8 weeks post-surgery. In all groups, the percentage of new bone increased, while fibrous tissue and CD68+ cell count decreased over time. However, these and other healing features, like mineral density, bending stiffness, the amount of new bone and cartilage, and the gene expression of osteogenic markers, did not significantly differ between groups. Based on these findings, it appears that the bone healing environment could counteract the long-term, pro-osteogenic effects of EStim seen in our in vitro studies. Thus, EStim seems to be more effective when administered directly and continuously at the defect site during bone healing, as indicated by our previous studies.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos , Ratas , Animales , Ratas Sprague-Dawley , Huesos , Estimulación Eléctrica
4.
Cells ; 12(9)2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37174689

RESUMEN

The classic two-stage masquelet technique is an effective procedure for the treatment of large bone defects. Our group recently showed that one surgery could be saved by using a decellularized dermis membrane (DCD, Epiflex, DIZG). In addition, studies with bone substitute materials for defect filling show that it also appears possible to dispense with the removal of syngeneic cancellous bone (SCB), which is fraught with complications. The focus of this work was to clarify whether the SCB can be replaced by the granular demineralized bone matrix (g-DBM) or fibrous demineralized bone matrix (f-DBM) demineralized bone matrix and whether the colonization of the DCD and/or the DBM defect filling with bone marrow mononuclear cells (BMC) can lead to improved bone healing. In 100 Sprague Dawley rats, a critical femoral bone defect 5 mm in length was stabilized with a plate and then encased in DCD. Subsequently, the defect was filled with SCB (control), g-DBM, or f-DBM, with or without BMC. After 8 weeks, the femurs were harvested and subjected to histological, radiological, and biomechanical analysis. The analyses showed the incipient bony bridging of the defect zone in both groups for g-DBM and f-DBM. Stability and bone formation were not affected compared to the control group. The addition of BMCs showed no further improvement in bone healing. In conclusion, DBM offers a new perspective on defect filling; however, the addition of BMC did not lead to better results.


Asunto(s)
Médula Ósea , Sustitutos de Huesos , Ratas , Animales , Ratas Sprague-Dawley , Osteogénesis , Fémur/patología
5.
Redox Biol ; 57: 102473, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36182808

RESUMEN

Carotid artery stenosis (CAS) develops from atherosclerotic lesions and plaques. Plaque rupture or stenosis may result in occlusion of the carotid artery. Accordingly, the asymptomatic disease becomes symptomatic, characterized by ischemic stroke or transient ischemic attacks, indicating an urgent need for better understanding of the underlying molecular mechanisms and eventually prevent symptomatic CAS. NOX4, a member of the NADPH oxidase family, has anti-atherosclerotic and anti-inflammatory properties in animal models of early atherosclerosis. We hypothesized that NOX4 mRNA expression is linked to protective mechanisms in CAS patients with advanced atherosclerotic lesions as well. Indeed, NOX4 mRNA expression is lower in patients with symptomatic CAS. A low NOX4 mRNA expression is associated with an increased risk of the development of clinical symptoms. In fact, NOX4 appears to be linked to plaque stability, apoptosis and plaque hemorrhage. This is supported by cleaved caspase-3 and glycophorin C and correlates inversely with plaque NOX4 mRNA expression. Even healing of a ruptured plaque appears to be connected to NOX4, as NOX4 mRNA expression correlates to fibrous cap collagen and is reciprocally related to MMP9 activity. In conclusion, low intra-plaque NOX4 mRNA expression is associated with an increased risk for symptomatic outcome and with reduced plaque stabilizing mechanisms suggesting protective effects of NOX4 in human advanced atherosclerosis.

6.
Anal Chem ; 94(38): 13243-13249, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36107722

RESUMEN

Liposomes are emerging therapeutic formulations for site-specific delivery of chemotherapeutic drugs. The efficiency and selectivity of drug delivery by these carriers largely rely on their surface properties, shape, and size. There is a growing demand for analytical approaches that can be used for structural and morphological characterization of liposomes at the single-vesicle level. AFM-IR is a modern optical nanoscopic technique that combines the advantages of scanning probe microscopy and infrared spectroscopy. Our findings show that AFM-IR can be used to probe conformational changes in phospholipids that take place upon their assembly into liposomes. Such conclusions can be made based on the corresponding changes in intensities of the lipid vibrational bands as the molecules transition from a solid state into large unilamellar vesicles (LUVs). This spectroscopic analysis of LUV formation together with density functional theory calculations also reveals the extent to which the molecular conformation and local environment of the functional groups alter the AFM-IR spectra of phospholipids. Using melittin as a test protein, we also examined the extent to which LUVs can be used for protein internalization. We found that melittin enters LUVs nearly instantaneously, which protects it from possible structural modifications that are caused by a changing environment. This foundational work empowers AFM-IR analysis of liposomes and opens new avenues for determination of the molecular mechanisms of liposome-drug interactions.


Asunto(s)
Liposomas , Fosfatidilcolinas , Teoría Funcional de la Densidad , Liposomas/química , Meliteno , Microscopía de Fuerza Atómica , Conformación Molecular , Fosfatidilcolinas/química , Fosfatidilserinas , Fosfolípidos/química , Espectrofotometría Infrarroja , Liposomas Unilamelares
7.
Antioxidants (Basel) ; 11(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892654

RESUMEN

The culture of primary intestinal epithelia cells is not possible in a normal culture system. In 2009 a three-dimensional culture system of intestinal stem cells was established that shows many of the physiological features of the small intestine, such as crypt-villus structure, stem cell niche and all types of differentiated intestinal epithelial cells. These enteroids can be used to analyze biology of intestinal stem cells, gut homeostasis and the development of diseases. They also give the possibility to reduce animal numbers, as enteroids can be cryo-conserved and cultivated for many passages. To investigate the influence of genes such as NADPH oxidases on the gut homeostasis, transgenic approached are the method of choice. The generation of enteroids from knockout mice allows real-time observations of knockout effects. Often conditional knockout or overexpression strategies using inducible Cre recombinase are applied to avoid effects of adaption to the knockout. However, the Cre recombinase has many known caveats from unspecific binding and its endonuclease activity. In this study, we show that although NADPH oxidases are important for in vivo differentiation and proliferation of the intestine, their expression is drastically reduced in the organoid system. Activation of Cre recombinase by 4-hydroxy tamoxifen in freshly isolated enteroids, independently of floxed genes, leads to decreased diameter of organoids. This effect is concentration-dependent and is caused by reduced cell proliferation and induction of apoptosis and DNA damage. In contrast, constitutive expression of Cre has no impact on the enteroids. Therefore, reduction of tamoxifen concentration and treatment duration should be carefully titrated, and appropriate controls are necessary.

8.
Antioxidants (Basel) ; 11(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35740059

RESUMEN

Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.

9.
Commun Biol ; 5(1): 583, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701603

RESUMEN

Tightly regulated and cell-specific NADPH-oxidases (Nox) represent one of the major sources of reactive oxygen species (ROS) signaling molecules that are involved in tissue development and stem cell self-renewal. We have characterized the role of Nox4 in osteo-progenitors during postnatal bone development. Nox4 expression in bone and ROS generation were increased during early osteoblast differentiation and bone development. Stromal osteoblastic cell self-renewal, proliferation and ROS production were significantly lower in samples from whole-body Nox4 knockout mice (Nox4-/-) and conditional knockout (CKO) mice with depletion of Nox4 in the limb bud mesenchyme compared with those from control mice (Nox4fl/fl), but they were reversed after 9 passages. In both sexes, bone volume, trabecular number and bone mineral density were significantly lower in 3-week old CKO and Nox4-/- mice compared with Nox4fl/fl controls. This was reflected in serum levels of bone formation markers alkaline phosphatase (ALP) and procollagen 1 intact N-terminal propeptide (P1NP). However, under-developed bone formation in 3-week old CKO and Nox4-/- mice quickly caught up to levels of control mice by 6-week of age, remained no different at 13-week of age, and was reversed in 32-week old male mice. Osteoclastogenesis showed no differences among groups, however, CTX1 reflecting osteoclast activity was significantly higher in 3-week old male CKO and Nox4-/- mice compared with control mice, and significantly lower in 32-week old Nox4-/- mice compared with control mice. These data suggest that Nox4 expression and ROS signaling in bone and osteoblastic cells coordinately play an important role in osteoblast differentiation, proliferation and maturation.


Asunto(s)
Desarrollo Óseo , NADPH Oxidasa 4 , Osteogénesis , Animales , Desarrollo Óseo/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , NADPH Oxidasa 4/biosíntesis , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Osteogénesis/fisiología , Especies Reactivas de Oxígeno/metabolismo
10.
Hypertension ; 79(5): 957-959, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35417224
11.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326163

RESUMEN

Acute myeloid leukemia (AML) cells harbor elevated levels of reactive oxygen species (ROS), which promote cell proliferation and cause oxidative stress. Therefore, the inhibition of ROS formation or elevation beyond a toxic level have been considered as therapeutic strategies. ROS elevation has recently been linked to enhanced NADPH oxidase 4 (NOX4) activity. Therefore, the compound Setanaxib (GKT137831), a clinically advanced ROS-modulating substance, which has initially been identified as a NOX1/4 inhibitor, was tested for its inhibitory activity on AML cells. Setanaxib showed antiproliferative activity as single compound, and strongly enhanced the cytotoxic action of anthracyclines such as daunorubicin in vitro. Setanaxib attenuated disease in a mouse model of FLT3-ITD driven myeloproliferation in vivo. Setanaxib did not significantly inhibit FLT3-ITD signaling, including FLT3 autophosphorylation, activation of STAT5, AKT, or extracellular signal regulated kinase 1 and 2 (ERK1/2). Surprisingly, the effects of Setanaxib on cell proliferation appeared to be independent of the presence of NOX4 and were not associated with ROS quenching. Instead, Setanaxib caused elevation of ROS levels in the AML cells and importantly, enhanced anthracycline-induced ROS formation, which may contribute to the combined effects. Further assessment of Setanaxib as potential enhancer of cytotoxic AML therapy appears warranted.

12.
Biomedicines ; 10(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35327444

RESUMEN

The Masquelet technique is used to treat large bone defects; it is a two-stage procedure based on an induced membrane. To improve the induced membrane process, demineralized bone matrix in granular (GDBM) and fibrous form (f-DBM) was tested with and without bone marrow mononuclear cells (BMC) as filling of the membrane against the gold standard filling with syngeneic cancellous bone (SCB). A total of 65 male Sprague-Dawley rats obtained a 5 mm femoral defect. These defects were treated with the induced membrane technique and filled with SCB, GDBM, or f-DBM, with or without BMC. After a healing period of eight weeks, the femurs were harvested and submitted for histological, radiological, and biomechanical analyses. The fracture load in the defect zone was lower compared to SCB in all groups. However, histological analysis showed comparable new bone formation, bone mineral density, and cartilage proportions and vascularization. The results suggest that f-DBM in combination with BMC and the induced membrane technique cannot reproduce the very good results of this material in large, non-membrane coated bone defects, nevertheless it supports the maturation of new bone tissue locally. It can be concluded that BMC should be applied in lower doses and inflammatory cells should be removed from the cell preparation before implantation.

13.
J Cancer Res Clin Oncol ; 148(8): 1983-1990, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35348887

RESUMEN

PURPOSE: Oxidative stress has been linked to initiation and progression of cancer and recent studies have indicated a potential translational role regarding modulation of ROS in various cancers, including acute myeloid leukemia (AML). Detailed understanding of the complex machinery regulating ROS including its producer elements in cancer is required to define potential translational therapeutic use. Based on previous studies in acute myeloid leukemia (AML) models, we considered NADPH oxidase (NOX) family members, specifically NOX4 as a potential target in AML. METHODS: Pharmacologic inhibition and genetic inactivation of NOX4 in murine and human models of AML were used to understand its functional role. For genetic inactivation, CRISPR-Cas9 technology was used in human AML cell lines in vitro and genetically engineered knockout mice for Nox4 were used for deletion of Nox4 in hematopoietic cells via Mx1-Cre recombinase activation. RESULTS: Pharmacologic NOX inhibitors and CRISPR-Cas9-mediated inactivation of NOX4 and p22-phox (an essential NOX component) decreased proliferative capacity and cell competition in FLT3-ITD-positive human AML cells. In contrast, conditional deletion of Nox4 enhanced the myeloproliferative phenotype of an FLT3-ITD induced knock-in mouse model. Finally, Nox4 inactivation in normal hematopoietic stem and progenitor cells (HSPCs) caused a minor reduction in HSC numbers and reconstitution capacity. CONCLUSION: The role of NOX4 in myeloid malignancies appears highly context-dependent and its inactivation results in either enhancing or inhibitory effects. Therefore, targeting NOX4 in FLT3-ITD positive myeloid malignancies requires additional pre-clinical assessment.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , NADPH Oxidasa 4 , Animales , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Ratones Noqueados , Mutación , Trastornos Mieloproliferativos/genética , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno/metabolismo , Tirosina Quinasa 3 Similar a fms/genética
14.
Antioxidants (Basel) ; 11(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35204316

RESUMEN

Reactive oxygen species (ROS) are important mediators of both physiological and pathophysiological signal transduction in the cardiovascular system. The effects of ROS on cellular processes depend on the concentration, localization, and duration of exposure. Cellular stress response mechanisms have evolved to mitigate the negative effects of acute oxidative stress. In this study, we investigate the short-term and long-term metabolic and transcriptomic response of human umbilical vein endothelial cells (HUVEC) to different types and concentrations of ROS. To generate intracellular H2O2, we utilized a lentiviral chemogenetic approach for overexpression of human D-amino acid oxidase (DAO). DAO converts D-amino acids into their corresponding imino acids and H2O2. HUVEC stably overexpressing DAO (DAO-HUVEC) were exposed to D-alanine (3 mM), exogenous H2O2 (10 µM or 300 µM), or menadione (5 µM) for various timepoints and subjected to global untargeted metabolomics (LC-MS/MS) and RNAseq by MACE (Massive analysis of cDNA ends). A total of 300 µM H2O2 led to pronounced changes on both the metabolic and transcriptomic level. In particular, metabolites linked to redox homeostasis, energy-generating pathways, and nucleotide metabolism were significantly altered. Furthermore, 300 µM H2O2 affected genes related to the p53 pathway and cell cycle. In comparison, the effects of menadione and DAO-derived H2O2 mainly occurred at gene expression level. Collectively, all types of ROS led to subtle changes in the expression of ribosomal genes. Our results show that different types and concentration of ROS lead to a different metabolic and transcriptomic response in endothelial cells.

15.
Sci Signal ; 14(709): eabe3800, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34784249

RESUMEN

The formation of Ca2+ microdomains during T cell activation is initiated by the production of nicotinic acid adenine dinucleotide phosphate (NAADP) from its reduced form NAADPH. The reverse reaction­NAADP to NAADPH­is catalyzed by glucose 6-phosphate dehydrogenase (G6PD). Here, we identified NADPH oxidases NOX and DUOX as NAADP-forming enzymes that convert NAADPH to NAADP under physiological conditions in vitro. T cells express NOX1, NOX2, and, to a minor extent, DUOX1 and DUOX2. Local and global Ca2+ signaling were decreased in mouse T cells with double knockout of Duoxa1 and Duoxa2 but not with knockout of Nox1 or Nox2. Ca2+ microdomains in the first 15 s upon T cell activation were significantly decreased in Duox2−/− but not in Duox1−/− T cells, whereas both DUOX1 and DUOX2 were required for global Ca2+ signaling between 4 and 12 min after stimulation. Our findings suggest that a DUOX2- and G6PD-catalyzed redox cycle rapidly produces and degrades NAADP through NAADPH as an inactive intermediate.


Asunto(s)
Señalización del Calcio , Oxidasas Duales , Activación de Linfocitos , NADPH Oxidasas , NADP/biosíntesis , Linfocitos T , Animales , Oxidasas Duales/genética , Células HEK293 , Humanos , Células Jurkat , Ratones Noqueados , NADP/análogos & derivados , NADPH Oxidasas/genética , Linfocitos T/enzimología
16.
Cell Physiol Biochem ; 55(4): 489-504, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416105

RESUMEN

BACKGROUND/AIMS: Diaphragm dysfunction with increased reactive oxygen species (ROS) occurs within 72 hrs post-myocardial infarction (MI) in mice and may contribute to loss of inspiratory maximal pressure and endurance in patients. METHODS: We used wild-type (WT) and whole-body Nox4 knockout (Nox4KO) mice to measure diaphragm bundle force in vitro with a force transducer, mitochondrial respiration in isolated fiber bundles with an O2 sensor, mitochondrial ROS by fluorescence, mRNA (RT-PCR) and protein (immunoblot), and fiber size by histology 72 hrs post-MI. RESULTS: MI decreased diaphragm fiber cross-sectional area (CSA) (~15%, p = 0.015) and maximal specific force (10%, p = 0.005), and increased actin carbonylation (5-10%, p = 0.007) in both WT and Nox4KO. Interestingly, MI did not affect diaphragm mRNA abundance of MAFbx/atrogin-1 and MuRF-1 but Nox4KO decreased it by 20-50% (p < 0.01). Regarding the mitochondria, MI and Nox4KO decreased the protein abundance of citrate synthase and subunits of electron transport system (ETS) complexes and increased mitochondrial O2 flux (JO2) and H2O2 emission (JH2O2) normalized to citrate synthase. Mitochondrial electron leak (JH2O2/JO2) in the presence of ADP was lower in Nox4KO and not changed by MI. CONCLUSION: Our study shows that the early phase post-MI causes diaphragm atrophy, contractile dysfunction, sarcomeric actin oxidation, and decreases citrate synthase and subunits of mitochondrial ETS complexes. These factors are potential causes of loss of inspiratory muscle strength and endurance in patients, which likely contribute to the pathophysiology in the early phase post-MI. Whole-body Nox4KO did not prevent the diaphragm abnormalities induced 72 hrs post-MI, suggesting that systemic pharmacological inhibition of Nox4 will not benefit patients in the early phase post-MI.


Asunto(s)
Diafragma/enzimología , Mitocondrias Musculares/enzimología , Contracción Muscular , Atrofia Muscular/enzimología , Infarto del Miocardio/enzimología , NADPH Oxidasa 4/deficiencia , Animales , Diafragma/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , NADPH Oxidasa 4/metabolismo
17.
Antioxidants (Basel) ; 10(7)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34356336

RESUMEN

The NADPH oxidase Nox4 is a hydrogen peroxide (H2O2)-producing enzyme, with the highest expression in the kidney. As the kidney is involved in volume and blood pressure control through sodium handling, we set out to determine the impact of a low sodium diet on these parameters in WT and Nox4-/- mice. Nox4 expression in the murine kidney was restricted to the proximal tubule. Nevertheless, low-sodium-induced weight loss and sodium sparing function was similar in WT and Nox4-/- mice, disputing an important function of renal Nox4 in sodium handling. In contrast, a low sodium diet resulted in a reduction in systolic blood pressure in Nox4-/- as compared to WT mice. This was associated with a selectively lower pressure to heart-rate ratio, as well as heart to body weight ratio. In general, a low sodium diet leads to activation of sympathetic tone and the renin angiotensin system, which subsequently increases peripheral resistance. Our observations suggest that the control by this system is attenuated in Nox4-/- mice, resulting in lower blood pressure in response to low sodium.

18.
Redox Biol ; 45: 102050, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34218201

RESUMEN

OBJECTIVE: The NADPH oxidase Nox4 is an important source of H2O2. Nox4-derived H2O2 limits vascular inflammation and promotes smooth muscle differentiation. On this basis, the role of Nox4 for restenosis development was determined in the mouse carotid artery injury model. METHODS AND RESULTS: Genetic deletion of Nox4 by a tamoxifen-activated Cre-Lox-system did not impact on neointima formation in the carotid artery wire injury model. To understand this unexpected finding, time-resolved single-cell RNA-sequencing (scRNAseq) from injured carotid arteries of control mice and massive-analysis-of-cDNA-ends (MACE)-RNAseq from the neointima harvested by laser capture microdissection of control and Nox4 knockout mice was performed. This revealed that resting smooth muscle cells (SMCs) and fibroblasts exhibit high Nox4 expression, but that the proliferating de-differentiated SMCs, which give rise to the neointima, have low Nox4 expression. In line with this, the first weeks after injury, gene expression was unchanged between the carotid artery neointimas of control and Nox4 knockout mice. CONCLUSION: Upon vascular injury, Nox4 expression is transiently lost in the cells which comprise the neointima. NADPH oxidase 4 therefore does not interfere with restenosis development after wire-induced vascular injury.


Asunto(s)
NADPH Oxidasa 4 , Neointima , Lesiones del Sistema Vascular , Animales , Células Cultivadas , Peróxido de Hidrógeno , Ratones , Ratones Noqueados , Miocitos del Músculo Liso , NADPH Oxidasa 4/genética
19.
Eur J Neurosci ; 54(3): 4804-4826, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34128265

RESUMEN

Olfactory receptor neurons (ORNs) of the hawkmoth Manduca sexta sensitize via cAMP- and adapt via cGMP-dependent mechanisms. Perforated patch clamp recordings distinguished 11 currents in these ORNs. Derivatives of cAMP and/or cGMP antagonistically affected three of five K+ currents and two non-specific cation currents. The Ca2+ -dependent K+ current IK(Ca2+) and the sensitive pheromone-dependent K+ current IK(cGMP-) , which both express fast kinetics, were inhibited by 8bcGMP, while a slow K+ current, IK(cGMP+) , was activated by 8bcGMP. Furthermore, application of 8bcAMP blocked slowly activating, zero mV-reversing, non-specific cation currents, ILL and Icat(PKC?) , which remained activated in the presence of 8bcGMP. Their activations pull the membrane potential towards their 0-mV reversal potentials, in addition to increasing intracellular Ca2+ levels voltage- and ILL -dependently. Twenty minutes after application, 8bcGMP blocked a TEA-independent K+ current, IK(noTEA) , and a fast cation current, Icat(nRP) , which both shift the membrane potential to negative values. We conclude that conditions of sensitization are maintained at high levels of cAMP, via specific opening/closure of ion channels that allow for fast kinetics, hyperpolarized membrane potentials, and low intracellular Ca2+ levels. In contrast, adaptation is supported via cGMP, which antagonizes cAMP, opening Ca2+ -permeable channels with slow kinetics that stabilize depolarized resting potentials. The antagonistic modulation of peripheral sensory neurons by cAMP or cGMP is reminiscent of pull-push mechanisms of neuromodulation at central synapses underlying metaplasticity.


Asunto(s)
Manduca , Neuronas Receptoras Olfatorias , Animales , Calcio , Potenciales de la Membrana , Nucleótidos Cíclicos , Células Receptoras Sensoriales
20.
Cells ; 10(5)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069404

RESUMEN

Regeneration of large bone defects is a major objective in trauma surgery. Bone marrow mononuclear cell (BMC)-supported bone healing was shown to be efficient after immobilization on a scaffold. We hypothesized that fibrous demineralized bone matrix (DBM) in various forms with BMCs is superior to granular DBM. A total of 65 male SD rats were assigned to five treatment groups: syngenic cancellous bone (SCB), fibrous demineralized bone matrix (f-DBM), fibrous demineralized bone matrix densely packed (f-DBM 120%), DBM granules (GDBM) and DBM granules 5% calcium phosphate (GDBM5%Ca2+). BMCs from donor rats were combined with different scaffolds and placed into 5 mm femoral bone defects. After 8 weeks, bone mineral density (BMD), biomechanical stability and histology were assessed. Similar biomechanical properties of f-DBM and SCB defects were observed. Similar bone and cartilage formation was found in all groups, but a significantly bigger residual defect size was found in GDBM. High bone healing scores were found in f-DBM (25) and SCB (25). The application of DBM in fiber form combined with the application of BMCs shows promising results comparable to the gold standard, syngenic cancellous bone. Denser packing of fibers or higher amount of calcium phosphate has no positive effect.


Asunto(s)
Trasplante de Médula Ósea , Matriz Ósea/trasplante , Regeneración Ósea , Fracturas del Fémur/cirugía , Curación de Fractura , Andamios del Tejido , Animales , Técnica de Desmineralización de Huesos , Células Cultivadas , Condrogénesis , Modelos Animales de Enfermedad , Fracturas del Fémur/metabolismo , Fracturas del Fémur/patología , Masculino , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA