Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Microbiol Spectr ; : e0065624, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980019

RESUMEN

European foulbrood (EFB) is a prevalent disease in the European honey bee (Apis mellifera) in the United States, which can lead to colony decline and collapse. The bacterial components of EFB are well-studied, but the diversity of viral infections within infected colonies has not been explored. In this study, we use meta-transcriptomics sequencing of 12 honey bee hives, symptomatic (+, n = 6) and asymptomatic (-, n = 6) for EFB, to investigate viral infection associated with the disease. We assembled 41 viral genomes, belonging to three families (Iflaviridae, Dicistroviridae, and Sinhaliviridae), all previously reported in honey bees, including Lake Sinai virus, deformed wing virus, sacbrood virus, Black queen cell virus, and Israeli acute paralysis virus. In colonies with severe EFB, we observed a higher occurrence of viral genomes (34 genomes) in contrast to fewer recovered from healthy colonies (seven genomes) and a complete absence of Dicistroviridae genomes.We observed specific Lake Sinai virus clades associated exclusively with EFB + or EFB - colonies, in addition to EFB-afflicted colonies that exhibited an increase in relative abundance of sacbrood viruses. Multivariate analyses highlighted that a combination of site and EFB disease status influenced RNA virome composition, while EFB status alone did not significantly impact it, presenting a challenge for comparisons between colonies kept in different yards. These findings contribute to the understanding of viral dynamics in honey bee colonies compromised by EFB and underscore the need for future investigations to consider viral composition when investigating EFB.IMPORTANCEThis study on the viromes of honey bee colonies affected by European foulbrood (EFB) sheds light on the dynamics of viral populations in bee colonies in the context of a prevalent bacterial brood disease. The identification of distinct Lake Sinai virus and sacbrood virus clades associated with colonies affected by severe EFB suggests a potential connection between viral composition and disease status, emphasizing the need for further investigation into the role of viruses during EFB infection. The observed increase in sacbrood viruses during EFB infection suggests a potential viral dysbiosis, with potential implications for honey bee brood health. These findings contribute valuable insights related to beekeeping practices, offering a foundation for future research aimed at understanding and mitigating the impact of bacterial and viral infection in commercial honey bee operations and the management of EFB.

2.
Front Vet Sci ; 11: 1371774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933699

RESUMEN

Introduction: There are no microbiological regulatory limits for viruses in animal feed and feed ingredients. Methods: A performance objective (PO) was proposed in this study to manufacture a spray-dried porcine plasma (SDPP) batch absent of any infectious viral particles. The PO levels of -7.0, -7.2, and -7.3 log TCID50/g in SDPP were estimated for three batch sizes (10, 15, and 20 tons). Results and discussion: A baseline survey on the presence of porcine epidemic diarrhea virus (PEDV) in raw porcine plasma revealed a concentration of -1.0 ± 0.6 log TCID50/mL as calculated using a TCID50-qPCR derived standard curve. The mean African swine fever virus (ASFV) concentration in raw plasma was estimated to be 0.6 log HAD50/mL (0.1-1.4, 95% CI) during a pre-clinical scenario (collected from asymptomatic and undetected viremic pigs). Different processing scenarios (baseline: spray-drying + extended storage) and baseline + ultraviolet (UV) radiation were evaluated to meet the PO levels proposed in this study. The baseline and baseline + UV processing scenarios were >95 and 100% effective in achieving the PO for PEDV by using different batch sizes. For the ASFV in SDPP during a pre-clinical scenario, the PO compliance was 100% for all processing scenarios evaluated. Further research is needed to determine the underlying mechanisms of virus inactivation in feed storage to further advance the implementation of feed safety risk management efforts globally.

3.
Sci Adv ; 10(15): eadk1954, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598627

RESUMEN

The globally distributed marine alga Emiliania huxleyi has cooling effect on the Earth's climate. The population density of E. huxleyi is restricted by Nucleocytoviricota viruses, including E. huxleyi virus 201 (EhV-201). Despite the impact of E. huxleyi viruses on the climate, there is limited information about their structure and replication. Here, we show that the dsDNA genome inside the EhV-201 virion is protected by an inner membrane, capsid, and outer membrane. EhV-201 virions infect E. huxleyi by using fivefold vertices to bind to and fuse the virus' inner membrane with the cell plasma membrane. Progeny virions assemble in the cytoplasm at the surface of endoplasmic reticulum-derived membrane segments. Genome packaging initiates synchronously with the capsid assembly and completes through an aperture in the forming capsid. The genome-filled capsids acquire an outer membrane by budding into intracellular vesicles. EhV-201 infection induces a loss of surface protective layers from E. huxleyi cells, which enables the continuous release of virions by exocytosis.


Asunto(s)
Haptophyta , Phycodnaviridae , Virus , Haptophyta/metabolismo , Phycodnaviridae/genética , Virión , Clima
4.
PLoS One ; 19(3): e0297623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483922

RESUMEN

Deformed wing virus (DWV) was first detected in dead honey bees in 1982 but has been in honey bees for at least 300 years. Due to its high prevalence and virulence, they have been linked with the ongoing decline in honey bee populations worldwide. A rapid, simple, semi-automated, high-throughput, and cost-effective method of screening colonies for viruses would benefit bee research and the beekeeping industry. Here we describe a semi-automated approach that combines an RNA-grade liquid homogenizer followed by magnetic bead capture for total virus nucleic acid extraction. We compare it to the more commonly applied nucleic acid column-based purification method and use qPCR plus Oxford Nanopore Technologies sequencing to evaluate the accuracy of analytical results for both methods. Our results showed high reproducibility and accuracy for both approaches. The semi-automated method described here allows for faster screening of viral loads in units of 96 samples at a time. We developed this method to monitor viral loads in honey bee colonies, but it could be easily applied for any PCR or genomic-based screening assays.


Asunto(s)
Ácidos Nucleicos , Virus ARN , Virus , Abejas , Animales , Reproducibilidad de los Resultados , Virus/genética , Virus ARN/genética
5.
Virol J ; 21(1): 1, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172919

RESUMEN

BACKGROUND: The particle structure of Emiliania huxleyi virus (EhV), an algal infecting member of nucleocytoplasmic large DNA viruses (NCLDVs), contains an outer lipid membrane envelope similar to that found in animal viruses such as African swine fever virus (ASFV). Despite both being enveloped NCLDVs, EhV and ASFV are known for their stability outside their host environment. METHOD: Here we report for the first time, the application of a viability qPCR (V-qPCR) method to describe the unprecedented and similar virion thermal stability of both EhV and ASFV. This result contradicts the cell culture-based assay method that suggests that virus "infectivity" is lost in a matter of seconds (for EhV) and minutes (for ASFV) at temperature greater than 50 °C. Confocal microscopy and analytical flow cytometry methods was used to validate the V-qPCR data for EhV. RESULTS: We observed that both EhV and ASFV particles has unprecedented thermal tolerances. These two NCLDVs are exceptions to the rule that having an enveloped virion anatomy is a predicted weakness, as is often observed in enveloped RNA viruses (i.e., the viruses causing Porcine Reproductive and Respiratory Syndrome (PRRS), COVID-19, Ebola, or seasonal influenza). Using the V-qPCR method, we confirm that no PRRSV particles were detectable after 20 min of exposure to temperatures up to 100 °C. We also show that the EhV particles that remain after 50 °C 20 min exposure was in fact still infectious only after the three blind passages in bioassay experiments. CONCLUSIONS: This study raises the possibility that ASFV is not always eliminated or contained after applying time and temperature inactivation treatments in current decontamination or biosecurity protocols. This observation has practical implications for industries involved in animal health and food security. Finally, we propose that EhV could be used as a surrogate for ASFV under certain circumstances.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Haptophyta , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Haptophyta/genética , Virión , Reacción en Cadena de la Polimerasa
6.
J Insect Sci ; 23(6)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055945

RESUMEN

European foulbrood (EFB) is a severe disease of honey bee (Apis mellifera) larvae caused by the bacterium Linnaeus [Hymenoptera: Apidae]) Melissococcus plutonius (ex White) Bailey and Collins (Lactobacillales: Enterococcaceae). Many beekeepers in North America report severe EFB following blueberry pollination, but it is not clear what factors during pollination are related to clinical disease. Additionally, the impact that other factors such as viral load and hygienic behavior have on EFB has not been studied. In Spring of 2020 we enrolled 60 commercial honey bee colonies in a prospective cohort study. Colonies were inspected 3 times over the season with hive metrics and samples taken for viral testing. Each colony was tested for hygienic behavior twice and the score was averaged. Viral loads were determined by qPCR for deformed wing virus (DWV) A and B. We found no statistical difference in the EFB prevalence or severity between the 2 yards at any timepoint; 50% (n = 16) of the colonies in the holding yard and 63% (n = 17) in blueberry developed moderate to severe EFB over the study period. When colonies from both yards were pooled, we found no relationship between viral load or hygienic behavior and development of EFB. These results suggest that other factors may be responsible for driving EFB virulence and hygienic behavior is not likely helpful in managing this disease.


Asunto(s)
Arándanos Azules (Planta) , Coinfección , Abejas , Animales , Michigan , Polinización , Estudios Prospectivos
7.
Viruses ; 15(12)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38140573

RESUMEN

Phaeoviruses (Phycodnaviridae) are large icosahedral viruses in the phylum Nucleocytoviricota with dsDNA genomes ranging from 160 to 560 kb, infecting multicellular brown algae (Phaeophyceae). The phaeoviral host range is broader than expected, not only infecting algae from the Ectocarpales but also from the Laminariales order. However, despite phaeoviral infections being reported globally, Norwegian kelp species have not been screened. A molecular analysis of cultured and wild samples of two economically important kelp species in Norway (Saccharina latissima and Laminaria hyperborea) revealed that phaeoviruses are recurrently present along the Norwegian coast. We found the viral prevalence in S. latissima to be significantly higher at the present time compared to four years ago. We also observed regional differences within older samples, in which infections were significantly lower in northern areas than in the south or the fjords. Moreover, up to three different viral sequences were found in the same algal individual, one of which does not belong to the Phaeovirus genus and has never been reported before. This master variant therefore represents a putative new member of an unclassified phycodnavirus genus.


Asunto(s)
Kelp , Phaeophyceae , Phycodnaviridae , Noruega/epidemiología , Phycodnaviridae/genética
8.
PLoS Pathog ; 19(12): e1011817, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38127684

RESUMEN

It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.


Asunto(s)
Sarampión , Panencefalitis Esclerosante Subaguda , Animales , Humanos , Panencefalitis Esclerosante Subaguda/genética , Panencefalitis Esclerosante Subaguda/patología , Virus del Sarampión/genética , Virus del Sarampión/metabolismo , Sarampión/genética , Sarampión/metabolismo , Encéfalo/patología , Tropismo/genética
10.
Animals (Basel) ; 13(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37508151

RESUMEN

No system nor standardized analytical procedures at commercial laboratories exist to facilitate and accurately measure potential viable virus contamination in feed ingredients and complete feeds globally. As a result, there is high uncertainty of the extent of swine virus contamination in global feed supply chains. Many knowledge gaps need to be addressed to improve our ability to prevent virus contamination and transmission in swine feed. This review summarizes the current state of knowledge involving: (1) the need for biosecurity protocols to identify production, processing, storage, and transportation conditions that may cause virus contamination of feed ingredients and complete feed; (2) challenges of measuring virus inactivation; (3) virus survival in feed ingredients during transportation and storage; (4) minimum infectious doses; (5) differences between using a food safety objective versus a performance objective as potential approaches for risk assessment in swine feed; (6) swine virus inactivation from thermal and irradiation processes, and chemical mitigants in feed ingredients and complete feed; (7) efficacy of virus decontamination strategies in feed mills; (8) benefits of functional ingredients, nutrients, and commercial feed additives in pig diets during a viral health challenge; and (9) considerations for improved risk assessment models of virus contamination in feed supply chains.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37137384

RESUMEN

Metal contamination impacts various aquatic species, and mollusk bivalves are appropriate sentinel organisms in coastal pollution assessment. Metal exposure can disrupt homeostasis, alter gene expression, and harm cellular processes. However, organisms have evolved mechanisms to regulate metal ions and counteract their toxicity. This study examined the effect of acute cadmium (Cd) and zinc (Zn) on metal-related gene expression in gills of Crassostrea gasar following 24 and 48 h of laboratory exposure. We focused on Zn transport, metallothionein (MT), glutathione (GSH) biosynthesis, and calcium (Ca) transporter genes to understand the underlying Cd and Zn-accumulating mechanisms that prevent metal toxicity. Our findings revealed increased Cd and Zn levels in oyster gills, with significantly higher accumulation after 48 h. C. gasar accumulated high Cd concentrations even in scarce conditions and increased Zn levels, suggesting a strategy to cope with toxicity. While no significant gene expression differences were observed after 24 h, the increased metal accumulation after 48 h led to upregulation of CHAC1, GCLC, ZnT2, and MT-like genes in oysters exposed to Cd, and increased ZnT2-like expression following exposure to higher Cd/Zn mixtures. We found evidence of oysters may mobilize metal-related genes to mitigate Cd-induced toxicity by both chelating metals and/or reducing their intracellular concentrations. The observed genes upregulation also indicates their sensitivity to changes in metal bioavailability. Overall, this study offers insights into oyster mechanisms for coping with metal toxicity and suggests ZnT2, MT, CHAC1, and GCLC-like as molecular biomarkers for monitoring aquatic metal pollution using C. gasar as sentinel species.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Animales , Cadmio/metabolismo , Zinc/toxicidad , Zinc/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Contaminantes Químicos del Agua/metabolismo , Metales/metabolismo , Glutatión/metabolismo , Biomarcadores/metabolismo , Expresión Génica , Metalotioneína/genética , Metalotioneína/metabolismo
12.
BMC Ophthalmol ; 22(1): 518, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585637

RESUMEN

BACKGROUND: The purpose of this study was: [1] to evaluate the infectivity of two SARS-CoV-2 lineage A variants on human ocular tissues in vitro, and [2] to evaluate the stability of SARS-CoV-2 lineage A variants in corneal preservation medium. METHODS: Primary cultures of donor corneal, conjunctival, and limbal epithelium were inoculated with two lineage A, GISAID clade S isolates of SARS-CoV-2 (Hong Kong/VM20001061/2020, USA-WA1/2020), to evaluate the susceptibility of the ocular tissue to infection. Flat-mounted Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK) grafts were inoculated with SARS-CoV-2 to evaluate the susceptibility of the endothelium to infection. All inoculated samples were immunostained for SARS-CoV-2 nucleocapsid (N)-protein expression to confirm positive infection. SARS-CoV-2 Hong Kong was then inoculated into cornea preservation media (Life4°C, Numedis, Inc.). Inoculated media was stored at 4oC for 14 days and assayed over time for changes in infectious viral titers. RESULTS: Corneal, conjunctival, and limbal epithelial cells all demonstrated susceptibility to infection by SARS-CoV-2 lineage A variants. Conjunctiva demonstrated the highest infection rate (78% of samples infected [14/18]); however, infection rates did not differ statistically between cell types and viral isolates. After inoculation, 40% (4/10) of DSAEK grafts had active infection in the endothelium. SARS-CoV-2 lineage A demonstrated < 1 log decline in viral titers out to 14 days in corneal preservation media. CONCLUSIONS: SARS-CoV-2 lineage A variants can infect corneal, limbal, and conjunctival epithelium, as well as corneal endothelium. There was no statistical difference in infectivity between different lineage A variants. SARS-CoV-2 lineage A can survive and remain infectious in corneal preservation media out to 14 days in cold storage.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Córnea/cirugía , Endotelio Corneal/trasplante , Conjuntiva
13.
Front Microbiol ; 13: 1059118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569067

RESUMEN

African swine fever virus (ASFV) is a member of the nucleocytoplasmic large DNA viruses (NCLDVs) and is stable in a variety of environments, including animal feed ingredients as shown in previous laboratory experiments and simulations. Emiliania huxleyi virus (EhV) is another member of the NCLDVs, which has a restricted host range limited to a species of marine algae called Emiliania huxleyi. This algal NCLDV has many similar morphological and physical characteristics to ASFV thereby making it a safe surrogate, with results that are applicable to ASFV and suitable for use in real-world experiments. Here we inoculated conventional soybean meal (SBMC), organic soybean meal (SBMO), and swine complete feed (CF) matrices with EhV strain 86 (EhV-86) at a concentration of 6.6 × 107 virus g-1, and then transported these samples in the trailer of a commercial transport vehicle for 23 days across 10,183 km covering 29 states in various regions of the United States. Upon return, samples were evaluated for virus presence and viability using a previously validated viability qPCR (V-qPCR) method. Results showed that EhV-86 was detected in all matrices and no degradation in EhV-86 viability was observed after the 23-day transportation event. Additionally, sampling sensitivity (we recorded unexpected increases, as high as 49% in one matrix, when virus was recovered at the end of the sampling period) rather than virus degradation best explains the variation of virus quantity observed after the 23-day transport simulation. These results demonstrate for the first time that ASFV-like NCLDVs can retain viability in swine feed matrices during long-term transport across the continental United States.

14.
Elife ; 112022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052992

RESUMEN

Although vaccination is broadly used in North American swine breeding herds, managing swine influenza is challenging primarily due to the continuous evolution of influenza A virus (IAV) and the ability of the virus to transmit among vaccinated pigs. Studies that have simultaneously assessed the impact of vaccination on the emergence of IAV reassortment and genetic variation in pigs are limited. Here, we directly sequenced 28 bronchoalveolar lavage fluid (BALF) samples collected from vaccinated and unvaccinated pigs co-infected with H1N1 and H3N2 IAV strains, and characterized 202 individual viral plaques recovered from 13 BALF samples. We identified 54 reassortant viruses that were grouped in 17 single and 16 mixed genotypes. Notably, we found that prime-boost vaccinated pigs had less reassortant viruses than nonvaccinated pigs, likely due to a reduction in the number of days pigs were co-infected with both challenge viruses. However, direct sequencing from BALF samples revealed limited impact of vaccination on viral variant frequency, evolutionary rates, and nucleotide diversity in any IAV coding regions. Overall, our results highlight the value of IAV vaccination not only at limiting virus replication in pigs but also at protecting public health by restricting the generation of novel reassortants with zoonotic and/or pandemic potential.


Swine influenza A viruses cause severe illness among pigs and financial losses on pig farms worldwide. These viruses can also infect humans and have caused deadly human pandemics in the past. Influenza A viruses are dangerous because viruses can be transferred between humans, birds and pigs. These co-infections can allow the viruses to swap genetic material. Viral genetic exchanges can result in new virus strains that are more dangerous or that can infect other types of animals more easily. Farmers vaccinate their pigs to control the swine influenza A virus. The vaccines are regularly updated to match circulating virus strains. But the virus evolves rapidly to escape vaccine-induced immunity, and infections are common even in vaccinated pigs. Learning about how vaccination affects the evolution of influenza A viruses in pigs could help scientists prevent outbreaks on pig farms and avoid spillover pandemics in humans. Li et al. show that influenza A viruses are less likely to swap genetic material in vaccinated and boosted pigs than in unvaccinated animals. In the experiments, Li et al. collected swine influenza A samples from the lungs of pigs that had received different vaccination protocols. Next, Li et al. used next-generation sequencing to identify new mutations in the virus or genetic swaps among different strains. In pigs infected with both the H1N1 and H3N2 strains of influenza, the two viruses began trading genes within a week. But less genetic mixing occurred in vaccinated and boosted pigs because they spent less time infected with both viruses than in unvaccinated pigs. The vaccination status of the pig did not have much effect on how many new mutations occurred in the viruses. The experiments show that vaccinating and boosting pigs against influenza A viruses may protect against genetic swapping among influenza viruses. If future studies on pig farms confirm the results, the information gleaned from the study could help scientists improve farm vaccine protocols to further reduce influenza risks to animals and people.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/genética , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria
15.
Nat Ecol Evol ; 6(10): 1414-1422, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138206

RESUMEN

Potential interactions among co-circulating viral strains in host populations are often overlooked in the study of virus transmission. However, these interactions probably shape transmission dynamics by influencing host immune responses or altering the relative fitness among co-circulating strains. In this Review, we describe multi-strain dynamics from ecological and evolutionary perspectives, outline scales in which multi-strain dynamics occur and summarize important immunological, phylogenetic and mathematical modelling approaches used to quantify interactions among strains. We also discuss how host-pathogen interactions influence the co-circulation of pathogens. Finally, we highlight outstanding questions and knowledge gaps in the current theory and study of ecological and evolutionary dynamics of multi-strain viruses.


Asunto(s)
Evolución Biológica , Virus ARN , Interacciones Huésped-Patógeno , Filogenia
16.
Chemosphere ; 307(Pt 4): 136009, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35977572

RESUMEN

Oysters have been extensively employed for monitoring of metal pollution in dynamic aquatic ecosystems. Therefore, the use of specific biomarkers can assist in discriminating the ecotoxicological implications of different elements in such complex environments. In this study, we revisited the sequencing data of gills and digestive glands transcripts in the mangrove oyster Crassostrea gasar and generated a reference transcriptome assembly from multiple assemblers, seven in total. Overall, we were able to identify a total of 11,917 transcripts, with 86.6% of them being functionally annotated and 1.4 times more than the first annotation. We screened the annotated transcripts to identify genes potentially involved in metals' transport, storage, and detoxification. Our findings included genes related to Zn distribution in cells (Zn transporters - ZIP, ZnT), metallothionein (MT-I and MT-IV), GSH biosynthesis, Ca+ transporter (NCX and ATP2B), and Cu distribution in cells (ATP7, ATOX1, CCS, and laccase-like). These results provided a reference transcriptome for additional insights into the transcriptional profile of C. gasar and other bivalves to better understand the molecular pathways underpinning metal tolerance and susceptibility. The study also provided an auxiliary tool for biomonitoring metal contamination in dynamic environments as estuaries.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Animales , Biomarcadores/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Ecosistema , Monitoreo del Ambiente , Lacasa/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Metales/análisis , Transcriptoma , Contaminantes Químicos del Agua/análisis
17.
Microbiol Resour Announc ; 11(8): e0051222, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35862925

RESUMEN

Over the past decade or so, PCR-based screening programs have reported that Africanized honey bees (AHB) are also hosts to viruses commonly found in European honey bees. Very little is known about the genomic variants found in AHB. Here, we present two distinct lineages of sinaiviruses in AHB.

18.
Front Vet Sci ; 9: 884733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774978

RESUMEN

The detection and co-circulation of multiple variants of porcine reproductive and respiratory syndrome virus (PRRSV) have been observed and reported in swine. However, the potential long-term impact of multiple prevailing PRRSV variants on pig-performance is not yet fully understood. The primary objective of this study was to describe the genetic variation of PRRSV in processing fluid (PF), oral fluid (OF), and tonsil scraping (TS) specimens from five swine farms with different production types and PRRS status over a period of time (~1 year). Furthermore, the association between PRRSV prevalence and production parameters was investigated. Results showed that PRRSV was detected by RT-qPCR in 21-25% of all types of specimens. In breeding farms, PRRSV detection in PF and/or TS samples was correlated with stillborn and mummified fetuses, and pre-weaning mortality throughout the study period. Although ORF5 sequences were obtained in <16% of all sample types, simultaneous detection of PRRSV variants including field and vaccine strains within a single sampling event was identified in both breeding and growing pig farms. Phylogenetic analyses based on the ORF5 sequence classified the detected field PRRSV into L1A and L1H, two sub-lineages of lineage 1 (L1). Our study demonstrated the presence of multiple PRRSV lineages, sub-lineages, and variants in swine herds and its potential association with swine reproductive performance under field conditions.

19.
Transbound Emerg Dis ; 69(4): e1005-e1014, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34747126

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) has been one of the major health-related concerns in the swine production industry. Through its rapid transmission and mutation, the simultaneous circulation of multiple PRRSV strains can be a challenge in PRRSV diagnostic, control and surveillance. The objective of this longitudinal study was to describe the temporal detection of PRRSV in swine farms with different production types and PRRS management strategies. Tonsil scraping (n = 344) samples were collected from three breeding and two growing herds for approximately one year. In addition, processing fluids (n = 216) were obtained from piglet processing batches within the three breeding farms while pen-based oral fluids (n = 125) were collected in the two growing pig farms. Viral RNA extraction and reverse-transcription quantitative PCR (RT-qPCR) were conducted for all samples. The sample positivity threshold was set at quantification cycle (Cq) of ≤ 37. Statistical analyses were performed using generalized linear modelling and post hoc pairwise comparisons with Bonferroni adjustments using R statistical software. The results suggested a higher probability of detection in processing fluids compared to tonsil scraping specimens [odds ratio (OR) = 3.86; p = .096] in breeding farms whereas oral fluids were outperformed by tonsil scrapings (OR = 0.26; p < .01) in growing pig farms. The results described herein may lead to an improvement in PRRSV diagnostic and surveillance by selecting proper specimens.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Anticuerpos Antivirales/análisis , Demografía , Estudios Longitudinales , Síndrome Respiratorio y de la Reproducción Porcina/diagnóstico , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Saliva , Porcinos
20.
Transbound Emerg Dis ; 69(1): 31-56, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34076354

RESUMEN

There are no published reports indicating that the African swine fever virus (ASFV) has been detected in feed ingredients or complete feed. This is primarily because there are only a few laboratories in the world that have the biosecurity and analytical capabilities of detecting ASFV in feed. Several in vitro studies have been conducted to evaluate ASFV concentration, viability and inactivation when ASFV was added to various feed ingredients and complete feed. These inoculation studies have shown that some feed matrices support virus survival longer than others and the reasons for this are unknown. Current analytical methodologies have significant limitations in sensitivity, repeatability, ability to detect viable virus particles and association with infectivity. As a result, interpretation of findings using various measures may lead to misleading conclusions. Because of analytical and technical challenges, as well as the lack of ASFV contamination data in feed supply chains, quantitative risk assessments have not been conducted. A few qualitative risk assessments have been conducted, but they have not considered differences in potential scenarios for ASFV contamination between various types of feed ingredient supply chains. Therefore, the purpose of this review is to provide a more holistic understanding of the relative potential risks of ASFV contamination in various global feed ingredient supply chains and provide recommendations for addressing the challenges identified.


Asunto(s)
Virus de la Fiebre Porcina Africana , Alimentación Animal/virología , Contaminación de Alimentos , Fiebre Porcina Africana/epidemiología , Animales , Bioaseguramiento , Riesgo , Porcinos , Enfermedades de los Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...