Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 19482, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593942

RESUMEN

CRISPR-Cas proteins are RNA-guided nucleases used to introduce double-stranded breaks (DSBs) at targeted genomic loci. DSBs are repaired by endogenous cellular pathways such as non-homologous end joining (NHEJ) and homology-directed repair (HDR). Providing an exogenous DNA template during repair allows for the intentional, precise incorporation of a desired mutation via the HDR pathway. However, rates of repair by HDR are often slow compared to the more rapid but less accurate NHEJ-mediated repair. Here, we describe comprehensive design considerations and optimized methods for highly efficient HDR using single-stranded oligodeoxynucleotide (ssODN) donor templates for several CRISPR-Cas systems including S.p. Cas9, S.p. Cas9 D10A nickase, and A.s. Cas12a delivered as ribonucleoprotein (RNP) complexes. Features relating to guide RNA selection, donor strand preference, and incorporation of blocking mutations in the donor template to prevent re-cleavage were investigated and were implemented in a novel online tool for HDR donor template design. These findings allow for high frequencies of precise repair utilizing HDR in multiple mammalian cell lines. Tool availability: https://www.idtdna.com/HDR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/metabolismo , Edición Génica , Reparación del ADN por Recombinación , Línea Celular , Humanos , Mutación , ARN Guía de Kinetoplastida/genética
2.
Mol Ther Methods Clin Dev ; 22: 237-248, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34485608

RESUMEN

Pyruvate kinase deficiency (PKD), an autosomal-recessive disorder, is the main cause of chronic non-spherocytic hemolytic anemia. PKD is caused by mutations in the pyruvate kinase, liver and red blood cell (P KLR) gene, which encodes for the erythroid pyruvate kinase protein (RPK). RPK is implicated in the last step of anaerobic glycolysis in red blood cells (RBCs), responsible for the maintenance of normal erythrocyte ATP levels. The only curative treatment for PKD is allogeneic hematopoietic stem and progenitor cell (HSPC) transplant, associated with a significant morbidity and mortality, especially relevant in PKD patients. Here, we address the correction of PKD through precise gene editing at the PKLR endogenous locus to keep the tight regulation of RPK enzyme during erythropoiesis. We combined CRISPR-Cas9 system and donor recombinant adeno-associated vector (rAAV) delivery to build an efficient, safe, and clinically applicable system to knock in therapeutic sequences at the translation start site of the RPK isoform in human hematopoietic progenitors. Edited human hematopoietic progenitors efficiently reconstituted human hematopoiesis in primary and secondary immunodeficient mice. Erythroid cells derived from edited PKD-HSPCs recovered normal ATP levels, demonstrating the restoration of RPK function in PKD erythropoiesis after gene editing. Our gene-editing strategy may represent a lifelong therapy to correct RPK functionality in RBCs for PKD patients.

4.
Nat Commun ; 12(1): 3908, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162850

RESUMEN

Though AsCas12a fills a crucial gap in the current genome editing toolbox, it exhibits relatively poor editing efficiency, restricting its overall utility. Here we isolate an engineered variant, "AsCas12a Ultra", that increased editing efficiency to nearly 100% at all sites examined in HSPCs, iPSCs, T cells, and NK cells. We show that AsCas12a Ultra maintains high on-target specificity thereby mitigating the risk for off-target editing and making it ideal for complex therapeutic genome editing applications. We achieved simultaneous targeting of three clinically relevant genes in T cells at >90% efficiency and demonstrated transgene knock-in efficiencies of up to 60%. We demonstrate site-specific knock-in of a CAR in NK cells, which afforded enhanced anti-tumor NK cell recognition, potentially enabling the next generation of allogeneic cell-based therapies in oncology. AsCas12a Ultra is an advanced CRISPR nuclease with significant advantages in basic research and in the production of gene edited cell medicines.


Asunto(s)
Acidaminococcus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Edición Génica/métodos , Acidaminococcus/genética , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Células Cultivadas , Endonucleasas/genética , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Jurkat , Células Asesinas Naturales/metabolismo , Reproducibilidad de los Resultados , Linfocitos T/metabolismo
5.
Blood ; 137(5): 624-636, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32902645

RESUMEN

Immune checkpoint therapy has resulted in remarkable improvements in the outcome for certain cancers. To broaden the clinical impact of checkpoint targeting, we devised a strategy that couples targeting of the cytokine-inducible Src homology 2-containing (CIS) protein, a key negative regulator of interleukin 15 (IL-15) signaling, with fourth-generation "armored" chimeric antigen receptor (CAR) engineering of cord blood-derived natural killer (NK) cells. This combined strategy boosted NK cell effector function through enhancing the Akt/mTORC1 axis and c-MYC signaling, resulting in increased aerobic glycolysis. When tested in a lymphoma mouse model, this combined approach improved NK cell antitumor activity more than either alteration alone, eradicating lymphoma xenografts without signs of any measurable toxicity. We conclude that targeting a cytokine checkpoint further enhances the antitumor activity of IL-15-secreting armored CAR-NK cells by promoting their metabolic fitness and antitumor activity. This combined approach represents a promising milestone in the development of the next generation of NK cells for cancer immunotherapy.


Asunto(s)
Sangre Fetal/citología , Inmunoterapia Adoptiva , Interleucina-15/genética , Células Asesinas Naturales/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Supresoras de la Señalización de Citocinas/antagonistas & inhibidores , Aerobiosis , Animales , Antígenos CD19/inmunología , Linfoma de Burkitt/patología , Linfoma de Burkitt/terapia , Sistemas CRISPR-Cas , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Glucólisis , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/trasplante , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores Quiméricos de Antígenos , Transducción de Señal/fisiología , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Sci Adv ; 6(47)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208369

RESUMEN

Harnessing CRISPR-Cas9 technology for cancer therapeutics has been hampered by low editing efficiency in tumors and potential toxicity of existing delivery systems. Here, we describe a safe and efficient lipid nanoparticle (LNP) for the delivery of Cas9 mRNA and sgRNAs that use a novel amino-ionizable lipid. A single intracerebral injection of CRISPR-LNPs against PLK1 (sgPLK1-cLNPs) into aggressive orthotopic glioblastoma enabled up to ~70% gene editing in vivo, which caused tumor cell apoptosis, inhibited tumor growth by 50%, and improved survival by 30%. To reach disseminated tumors, cLNPs were also engineered for antibody-targeted delivery. Intraperitoneal injections of EGFR-targeted sgPLK1-cLNPs caused their selective uptake into disseminated ovarian tumors, enabled up to ~80% gene editing in vivo, inhibited tumor growth, and increased survival by 80%. The ability to disrupt gene expression in vivo in tumors opens new avenues for cancer treatment and research and potential applications for targeted gene editing of noncancerous tissues.


Asunto(s)
Nanopartículas , Neoplasias , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Transferencia de Gen , Liposomas , Neoplasias/genética , Neoplasias/terapia
7.
Blood Adv ; 4(14): 3357-3367, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32717029

RESUMEN

Virus-specific T cells have proven highly effective for the treatment of severe and drug-refractory infections after hematopoietic stem cell transplant (HSCT). However, the efficacy of these cells is hindered by the use of glucocorticoids, often given to patients for the management of complications such as graft-versus-host disease. To address this limitation, we have developed a novel strategy for the rapid generation of good manufacturing practice (GMP)-grade glucocorticoid-resistant multivirus-specific T cells (VSTs) using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing technology. We have shown that deleting the nuclear receptor subfamily 3 group C member 1 (NR3C1; the gene encoding for the glucocorticoid receptor) renders VSTs resistant to the lymphocytotoxic effect of glucocorticoids. NR3C1-knockout (KO) VSTs kill their targets and proliferate successfully in the presence of high doses of dexamethasone both in vitro and in vivo. Moreover, we developed a protocol for the rapid generation of GMP-grade NR3C1 KO VSTs with high on-target activity and minimal off-target editing. These genetically engineered VSTs promise to be a novel approach for the treatment of patients with life-threatening viral infections post-HSCT on glucocorticoid therapy.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Humanos , Receptores de Glucocorticoides/genética , Linfocitos T
8.
J Cytokine Biol ; 3(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30225466

RESUMEN

OBJECTIVES: CRISPR/Cas9 is currently the primary tool used for genome editing in mammalian cells. To cleave and alter genomic DNA, both the Cas9 nuclease and a guide RNA (gRNA) must be present in the nucleus. One preferred method of introducing these reagents is direct transfection of a recombinant Cas9 protein complexed with a synthetic gRNA as a ribonucleoprotein (RNP) complex. It is well established from prior work in RNA interference that synthetic RNAs can induce a type I interferon (IFN) response that can limit the application of such methods both in vitro and in vivo. While the immunological properties of short siRNAs are well understood, little is known about the immune recognition of longer CRISPR gRNAs. The objective of our in vitro study was to investigate how the composition of the gRNA influences its recognition by human immune cells. METHODS: The study was performed in vitro in human peripheral blood mononuclear cells (PBMCs). The PBMCs from healthy donor volunteers were treated with gRNA for 24 h, and the levels of type I IFNs in culture supernatants were measured by a multiplex enzyme-linked immunosorbent chemiluminescent assay. Prior to the analysis in PBMCs, the physicochemical parameters and functionality of all nucleic acid constructs were confirmed by electrospray-ionization mass spectrometry and CRISPR/Cas9 gene editing assessment in HEK293-Cas9 cells, respectively. RESULTS: We found that unmodified synthetic CRISPR gRNAs triggered a strong IFN response in PBMC cultures in vitro that could be prevented with chemical modification. Likewise, in vitro-transcribed single-guide RNAs (sgRNAs) also triggered a strong IFN response that could only be partially suppressed by phosphatase removal of the 5'-triphosphate group. However, the process by which the gRNA is prepared (i.e., chemically synthesized as a two-part crRNA:tracrRNA complex or in vitro-transcribed as an sgRNA) does not directly influence the immune response to an unmodified gRNA. When experiments were performed in the HEK293 cells, only in vitro-transcribed sgRNA containing 5'-triphosphate induced IFN secretion. CONCLUSION: The results of our structure-activity relationship study, therefore, suggest that chemical modifications commonly used to reduce the immunostimulation of traditional RNA therapeutics can also be used as effective tools to eliminate undesirable IFN responses to gRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...