Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 621(7977): 112-119, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648850

RESUMEN

Several coastal ecosystems-most notably mangroves and tidal marshes-exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment1. The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs2. The persistence of these ecosystems under high rates of RSLR is contested3. Here we show that the probability of vertical adjustment to RSLR inferred from palaeo-stratigraphic observations aligns with contemporary in situ survey measurements. A deficit between tidal marsh and mangrove adjustment and RSLR is likely at 4 mm yr-1 and highly likely at 7 mm yr-1 of RSLR. As rates of RSLR exceed 7 mm yr-1, the probability that reef islands destabilize through increased shoreline erosion and wave over-topping increases. Increased global warming from 1.5 °C to 2.0 °C would double the area of mapped tidal marsh exposed to 4 mm yr-1 of RSLR by between 2080 and 2100. With 3 °C of warming, nearly all the world's mangrove forests and coral reef islands and almost 40% of mapped tidal marshes are estimated to be exposed to RSLR of at least 7 mm yr-1. Meeting the Paris agreement targets would minimize disruption to coastal ecosystems.


Asunto(s)
Calentamiento Global , Temperatura , Humedales , Avicennia/fisiología , Secuestro de Carbono , Arrecifes de Coral , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Animales
2.
Natl Sci Rev ; 8(9): nwaa296, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691731

RESUMEN

Coastal tidal wetlands produce and accumulate significant amounts of organic carbon (C) that help to mitigate climate change. However, previous data limitations have prevented a robust evaluation of the global rates and mechanisms driving C accumulation. Here, we go beyond recent soil C stock estimates to reveal global tidal wetland C accumulation and predict changes under relative sea level rise, temperature and precipitation. We use data from literature study sites and our new observations spanning wide latitudinal gradients and 20 countries. Globally, tidal wetlands accumulate 53.65 (95%CI: 48.52-59.01) Tg C yr-1, which is ∼30% of the organic C buried on the ocean floor. Modeling based on current climatic drivers and under projected emissions scenarios revealed a net increase in the global C accumulation by 2100. This rapid increase is driven by sea level rise in tidal marshes, and higher temperature and precipitation in mangroves. Countries with large areas of coastal wetlands, like Indonesia and Mexico, are more susceptible to tidal wetland C losses under climate change, while regions such as Australia, Brazil, the USA and China will experience a significant C accumulation increase under all projected scenarios.

3.
Nature ; 569(7757): E8, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31065057

RESUMEN

Change history: In Fig. 2b of this Letter, 'Relative wetland change (km2)' should have read 'Relative wetland change (%)' and equations (2) and (3) have been changed from 'RSLRcrit = (m × TRe) × Sed + i' and 'Sedcrit = (RSLR - i)/(m × TRe)', respectively. The definition of the variables in equation (2) has been updated. These errors have been corrected online.

4.
Nature ; 561(7722): 231-234, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209368

RESUMEN

The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain. Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services1-3. These projections do not necessarily take into account all essential geomorphological4-7 and socio-economic system feedbacks8. Here we present an integrated global modelling approach that considers both the ability of coastal wetlands to build up vertically by sediment accretion, and the accommodation space, namely, the vertical and lateral space available for fine sediments to accumulate and be colonized by wetland vegetation. We use this approach to assess global-scale changes in coastal wetland area in response to global sea-level rise and anthropogenic coastal occupation during the twenty-first century. On the basis of our simulations, we find that, globally, rather than losses, wetland gains of up to 60 per cent of the current area are possible, if more than 37 per cent (our upper estimate for current accommodation space) of coastal wetlands have sufficient accommodation space, and sediment supply remains at present levels. In contrast to previous studies1-3, we project that until 2100, the loss of global coastal wetland area will range between 0 and 30 per cent, assuming no further accommodation space in addition to current levels. Our simulations suggest that the resilience of global wetlands is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone and such infrastructure is expected to change over the twenty-first century. Rather than being an inevitable consequence of global sea-level rise, our findings indicate that large-scale loss of coastal wetlands might be avoidable, if sufficient additional accommodation space can be created through careful nature-based adaptation solutions to coastal management.


Asunto(s)
Mapeo Geográfico , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Agua de Mar/análisis , Humedales , Calibración , Sedimentos Geológicos/análisis , Actividades Humanas , Internacionalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...